Properties of Silicon Carbide Polytypes under High Pressure Influence Calculated Using DFT

Author:

Emhemed Alham Mohamed M.1,Zabidi Noriza Ahmad2,Rosli Ahmad Nazrul1

Affiliation:

1. Universiti Sains Islam Malaysia

2. Universiti Pertahanan Nasional Malaysia

Abstract

Theoretical molecular dynamic simulations based on plane-wave and pseudopotential density functional theory (DFT) calculations with CASTEP code were employed to explore the pressure influence on the properties of silicon carbide polytypes. The changes in lattice and electronic structures of 2H-, 4H-, and 6H-SiC polytypes at room temperature were investigated when pressures from 10 GPa to 200 GPa were applied. It’s found that the applied pressures didn’t cause a change in the hexagonal structure of the crystals, however the structural and electronic properties clearly affected by the compression. The dependences of volume reduction (V/Vo) and lattice parameters (a and c) on pressure were obtained successfully. The lattice parameters of the polytypes and c/a ratio showed a same trend under the compression with a clear similarity between 4H and 6H. The total energy-volume and enthalpy-pressure relations were estimated. The calculated energy gaps showed a reduction in the band gap width of 4H and 6H with the pressure increase while 2H band gap increased gradually with pressure. The tendency toward decreasing the density of state (DOS) at the conduction band edge was similar among the polytypes.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3