Ferroelectric Materials for High Temperature Piezoelectric Applications

Author:

De Udayan1,Sahu Kriti Ranjan2,De Abhijit3

Affiliation:

1. Kendriya Vihar C-4/60

2. Egra SSB College

3. Taki Govt. College

Abstract

Electronic control and operation in almost all advanced devices or machines involve use of various sensors and actuators, many of which are based on piezoelectric (PE) effect. Ferroelectric (FE) materials forming a sub-group of piezoelectric materials have additional applications. Subject to success in materials and related developments, PE and FE devices perform competitively with alternative devices but at lower cost in most cases. There is increasing commercial and technical interest for PE actuators (ranging from electronic muscles, fuel injectors and inkjet printers to various vibrators), PE sensors (pressure and other sensors and motion detection to energy recovery), and ultrasonic imaging devices. PE to non-PE transition temperature (Curie temperature for FE PE materials) and piezoelectric coefficients together decide the choice of the right material for any particular application. Since most of these applications, including medical ultrasonic imaging, are done at or near room temperature, low Curie temperature (but otherwise attractive) piezoelectric materials, based on barium titanate (BT), lead zirconate titanate (PZT) and relaxor ferroelectric ceramics, have served us well. However, a few important applications, in automobile and rocket exhausts, in some engines and gadgets, and inside high pressure molten metal in nuclear Fast Breeder Reactors (FBRs) involve high temperatures (HTs), higher than or nearing the Curie temperature of even PZT. These applications including FBRs, generating nuclear fuel and power, demand development of high temperature piezoelectric materials. FBRs can close the nuclear fuel cycle by partially using the nuclear waste (containing U-238) and thus minimize waste disposal problem. That makes nuclear energy a better green energy. Working on Th-232 from monazite sand, FBRs can breed Th-233, a nuclear fuel, with simultaneous generation of electricity. Ranging and imaging of nuclear fuel rods and control rods through the liquid metal coolant in FBRs, especially during insertion and withdrawal, help correct positioning of the rods to avoid any misalignment and possible nuclear accident. This “viewing” through the optically opaque liquid metal or alloy coolant, is possible by ultrasonic imaging of the rods using HT PE ultrasonic-generators and-detectors, an active area of research. Lithium niobate with T(Curie) > 1000°C and orthorhombic PbNb2O6with T(Curie) > 570°C are two of many HT PE materials under development or in trial runs. In the present work, world-wide R & D on HT piezoelectric materials has been reviewed after an outline of the basics.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3