Recovery of Zinc from EAF Dust by Alkaline Extraction

Author:

Jiang Jia Chao1,Yang Xiao Yu2,Zhao You Cai1

Affiliation:

1. Tongji University

2. China Railway SIYUAN Survey and Design Group CO…LTD

Abstract

In this paper, a series of lab-scale experiments have been focused on the zinc recovery from electric arc furnace (EAF) dust by alkaline extraction, combining with the novel alkaline zinc electrowinning technology. Effects of several leaching variables, i.e. leaching time (1-3 h), NaOH concentration (150-400 g/L), solid/liquid ratio (S/L, 1/5-1/12), temperature (30-90 °C) and stirring speed (300-500 rpm) on zinc recovery (%) were investigated. Around 84 %Zn and 92 % Pb were respectively recovered when the leaching process was operated with 250 g/L NaOH and S/L 1/10 at 90 °C for 2 h. After Pb was selectively removed by sodium sulfide precipitation, the alkaline zinc solution was subjected to electrolysis and zinc powder with a purity of 98.5 % was then obtained. The leaching residue is suitable for safe disposal, while the purifying residue can be marketed for lead recovering.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference15 articles.

1. J.C. Huber, F. Patisson, P. Rocabois, J.C. Birat and D. Ablitzer, in: Proc. Rewas'99-Global Symposium on Recycling, Waste Treatment and Clean Technology, San Sebastian, Vol. Ⅱ (1999), pp.1483-1492.

2. R. Stanforth, U.S. Patent 5, 037, 479. (1991).

3. G. Salihoglu, V. Pinarli: Journal of Hazardous Materials, Vol. 153 (3) (2008), pp.1110-1116.

4. J.R. Donald, C.A. Pickles: Canadian Metallurgical Quarterly, Vol. 35 (3) (1996), pp.255-267.

5. J. Pesl, J. Lehner and A. Fleischander, in: Proc. Rewas'99-Global Symposium on Recycling, Waste Treatment and Clean Technology, San Sebastian, Vol. Ⅱ (1999), pp.1413-1422.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3