Numerical Analysis of Tunnelling Effects on Masonry Buildings: The Influence of Tunnel Location on Damage Assessment

Author:

Giardina Giorgia1,Hendriks Max A.N.1,Rots Jan G.1

Affiliation:

1. Delft University of Technology

Abstract

The architectural heritage is subjected to various risk factors like the lack of maintenance, the material decay and the external solicitations. Nowadays, due to the ever-increasing demand for urban space, a relevant cause of structural damage that the historical buildings experience is the ground settlement due to excavation works. In the city of Amsterdam, for example, the construction of the new North-South metro line will involve an area characterized by the presence of many ancient masonry buildings. A fundamental phase of the design of this kind of projects is the assessment of the risk of subsidence which can affect the existing structures. The actual method to perform this assessment provides for a preliminary screening of the buildings located in the area surrounding the excavation, in order to evaluate which structures are at risk of settlement induced damage. It is based on the simplification of the building as a linear elastic beam and the assumption of the absence of interaction between the soil and the structure. An improved classification system should take into account the main parameters which influence the structural response, like the nonlinear behaviour of the building and the role played by the foundation in the soil-structure interaction. In this paper, the effect on the damage mechanism of the excavation advance and the location of the tunnel with respect to the building is evaluated. Numerical analyses are performed in order to understand the effect of different settlement profiles of the ground. A coupled model of the structure and the soil is evaluated, taking into account a damage model for the masonry building and the nonlinear behaviour of the soil-structure interaction. This paper demonstrates the importance of 3D modelling; neglecting the tunnel advance can lead to an underestimation of the damage.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference3 articles.

1. Augarde, C E (1997). Numerical modeling of tunneling processes for assessment of damage to buildings., DPhil thesis, Oxford University.

2. Burland, J P, and Wroth, C P (1974). Settlement of buildings and associated damage., in Proc. of Conference on Settlement of Structures, Pentech Press, Cambridge, pp.611-654.

3. Franzius, J N (2004). Behaviour of buildings due to tunnel induced subsidence., DPhil thesis, Imperial College, London.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3