Neutron Surface Residual Stress Scanning Using Optimisation of a Si Bent Perfect Crystal Monochromator for Minimising Spurious Strains

Author:

Rebelo-Kornmeier Joana1,Gibmeier Jens2,Hofmann Michael3,Wimpory Robert C.1

Affiliation:

1. Helmholtz-Zentrum Berlin für Materialien und Energie

2. Karlsruhe Institute of Technology (KIT)

3. Technische Universität München

Abstract

For non destructive stress analysis of surface treated steel samples the application of laboratory X rays or high energy synchrotron radiation in reflection mode covers the region from some micrometers up to a depth of about 150 - 200 µm. To access depth regions deeper than 200 µm the incremental layer removal technique in combination with the repeated application of X‑ray stress analysis for the newly generated surfaces can be used. However, this procedure is destructive, laborious and furthermore, it has to be checked whether corrections have to be applied due to stress relaxation. By using neutron radiation penetration depths generally up to several millimetres can be achieved non destructively [1]. However neutron measurements are critical at the surface. When scanning a sample surface, aberration peak shifts caused by so called spurious strains arise due to the fact that the gauge volume defined by the primary and secondary optics is partially outside of the sample. These aberration peak shifts can be of the same order of magnitude as the peak shifts related to residual strains [2-6]. In this exemplary study it will be demonstrated that, by optimising the bending radius of a Si (400) monochromator, the spurious surface strains can be strongly reduced when compared to the values obtained with a traditional Ge (311) mosaic monochromator, even when the gauge volume is mainly out of the surface. The objective of the experiments is to find the optimal monochromator settings for the Si (400) monochromator at the STRESS-SPEC instrument at the research reactor FRM II, Munich, Germany. For the parametric studies a stress free steel sample of the fine grained construction steel, S690QL was used. The optimised conditions for the Si (400) monochromator that resulted from the systematic studies were applied to a shot peened plate of steel SAE 4140. The residual stress distribution is analysed by means of through surface strain scanning. The residual stress gradient obtained is in very good agreement with the well characterised residual stress depth profile obtained within a round robin test in the scope of the BRITE-EURAM-project ENSPED (European Network of Surface and Prestress Engineering and Design) [7]. The results indicated that surface residual stress profiles can be measured with neutrons up to 200 µm underneath the surface without time consuming and laborious surface effect corrections.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3