Active Devices for Power Electronics: SiC vs III-N Compounds – The Case of Schottky Rectifiers

Author:

Brylinski Christian1,Ménard Olivier2,Thierry-Jebali Nicolas3,Cayrel Frédéric4,Alquier Daniel4

Affiliation:

1. Université de Lyon

2. Université François Rabelais de Tours

3. University of Lyon 1

4. Université François Rabelais

Abstract

The main rectifier device structures for power electronics based on SiC and on GaN are compared and the main issues for each structure are evaluated in terms of performance and manufacturability. The driving volume markets for power electronics devices correspond to the systems working on 127, 240 and 400 V energy supply networks, setting the device voltage handling to 300, 600, and 1200V respectively. We have limited the scope hereafter to the 600 V typical target, for which SiC Schottky rectifiers are now commercially available from at least 3 sources. The key physical properties for any semiconductor material used as the active layer of a unipolar device for power electronics are the breakdown field and carriers mobility. The bulk values are very similar for SiC and GaN. Two main other key issues are related to quality of the ohmic and Schottky contacts. For the ohmic contacts, adequate solutions have been found for both SiC and GaN. Surprisingly, on hetero-epitaxial GaN layers on sapphire despite of the very high crystal defects density ( ≥ 109cm-2 ), the ideality factor of the best Schottky contacts seems very promising. On the other hand, improving this ideality factor and the reverse leakage current for Schottky contacts on GaN layers grown on silicon substrate remains a fierce challenge. For the SiC Schottky rectifiers, cost and availability of the SiC substrates appear as the main residual limiting factors today. For GaN based rectifiers, although engineering device prototypes have already been published [1], there are both basic issues to be validated regarding reverse leakage current and reliability, and also difficult manufacturing issues to be solved in relation with device reliability, directly resulting from the nature of the possible substrates: mainly sapphire and silicon.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference15 articles.

1. I. Cohen et al., in: Proceedings of the Applied Power Electronics Conference, (2005).

2. T. P Chow, Microelectronics Engineering Vol. 83 (2006), pp.112-122.

3. Data sheets available onsite at: , , < http: /www. st. com >.

4. S.J. Pearton, F. Ren, A.P. Zhang, K.P. Lee, Mater. Sci. Eng Vol. R30 (2000), p.55.

5. A. Denis A, G. Goglio, G. Demazeau Mater. Sci. Eng. Vol. R 50 (2006), p.167.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3