Simulating Phase Coarsening of Ultra-High Volume Fractions

Author:

Wang K.G.1,Ding X.1

Affiliation:

1. Florida Institute of Technology

Abstract

The dynamics of phase coarsening at ultra-high volume fractions is studied based on two-dimensional phase-field simulations by numerically solving the time-dependent Ginzburg-Landau and Cahn-Hilliard equations. The kinetics of phase coarsening at ultra-high volume fractions is discovered. The microstructural evolutions for different ultra-high volume fractions are shown. The scaled particle size distribution as functions of the dispersoid volume fraction is presented. The particle size distribution derived from our simulation at ultra-high volume fractions is close to Wagner's particle size distribution due to interface-controlled ripening rather than Hillert's grain size distribution in grain growth. The changes of shapes of particles are carefully studied with increase of volume fraction. It is found that more liquid-filled triple junctions are formed as a result of particle shape accommodation with increase of volume fraction at the regime of ultra-high volume fraction.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3