Formability of Hybrid Aluminum-Magnesium Compounds

Author:

Feuerhack Andreas1,Binotsch Carolin1,Awiszus Birgit1

Affiliation:

1. TU-Chemnitz

Abstract

In the SFB 692 HALS (High-strength aluminum based lightweight materials for safety components), subproject B-3, the production of an aluminum magnesium compound by a hydrostatic co-extrusion process was investigated. The quality of these semi-finished products, especially the stability and robustness of the interface between the aluminum (AlMgSi1) sleeve and magnesium (AZ31) core, was of particular interest. Previous papers have described the first process optimization steps as the improvement of the die design as well as the numerical methods for identification of important process parameters and the development of a quality model for the interface. This paper describes the formability of such semi-finished products with subsequent forging processes, especially die forging. Therefore, two different die forging strategies were investigated. In the first approach the strand-shaped work piece, with a circular cross-section, was formed along its longitudinal axis with die forging. In the second approach the same geometry was radially formed with die forging. Thereby, the compound was formed in longitudinal direction up to an analytical equivalent strain value of 1.61 and in radial direction up to 1.38. First results showed that the interface of the aluminum magnesium compound is very stable and ductile enough to be forged. Dye penetration tests were performed to prove the stability of the interface in a first step. Then, micro sections were made to investigate the interface metallographically. No cracks or damages were detected with both test methods in the interface of the forged aluminum magnesium compound. Furthermore, numerical simulations were performed to analyze the forging processes in detail. Therefore, a full 3D simulation model was set-up with Forge2011 and the calibration was performed with the press force as well as the geometry aspects. The correlations between experiments and simulations are very well. By means of the calibrated simulation detailed analyses of interface section are performed and the stability of the interface was investigated. This shows that the compound quality reached by the hydrostatic co-extrusion process is very suitable for subsequent forming steps as die forging. The investigations show the potential of such hybrid compounds and clarify their application, especially in the automotive sector.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3