Abstract
In the SFB 692 HALS (High-strength aluminum based lightweight materials for safety components), subproject B-3, the production of an aluminum magnesium compound by a hydrostatic co-extrusion process was investigated. The quality of these semi-finished products, especially the stability and robustness of the interface between the aluminum (AlMgSi1) sleeve and magnesium (AZ31) core, was of particular interest. Previous papers have described the first process optimization steps as the improvement of the die design as well as the numerical methods for identification of important process parameters and the development of a quality model for the interface. This paper describes the formability of such semi-finished products with subsequent forging processes, especially die forging. Therefore, two different die forging strategies were investigated. In the first approach the strand-shaped work piece, with a circular cross-section, was formed along its longitudinal axis with die forging. In the second approach the same geometry was radially formed with die forging. Thereby, the compound was formed in longitudinal direction up to an analytical equivalent strain value of 1.61 and in radial direction up to 1.38. First results showed that the interface of the aluminum magnesium compound is very stable and ductile enough to be forged. Dye penetration tests were performed to prove the stability of the interface in a first step. Then, micro sections were made to investigate the interface metallographically. No cracks or damages were detected with both test methods in the interface of the forged aluminum magnesium compound. Furthermore, numerical simulations were performed to analyze the forging processes in detail. Therefore, a full 3D simulation model was set-up with Forge2011 and the calibration was performed with the press force as well as the geometry aspects. The correlations between experiments and simulations are very well. By means of the calibrated simulation detailed analyses of interface section are performed and the stability of the interface was investigated. This shows that the compound quality reached by the hydrostatic co-extrusion process is very suitable for subsequent forming steps as die forging. The investigations show the potential of such hybrid compounds and clarify their application, especially in the automotive sector.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献