A Mesoscopic Modelling Framework of Microstructure Evolution and its Application on Thermo-Mechanical Processes

Author:

Xiao Na Min1,Sha Ai Xue1,Li Xing Wu1

Affiliation:

1. Aero Engine Cooperation of China (AECC)

Abstract

In present study a quantitative modelling framework based on phase-field method is developed to simulate the microstructure evolution during thermomechanical process, e. g. grain growth, recrystallization, solid phase transformations and their interactions. Two application cases of microstructure evolution are introduced. The first one is the dynamic recrystallization behavior during the hot deformation of stainless steel. The effect of thermo-mechanical parameters including strain, strain rate, and temperature on DRX have been investigated quantitatively. Moreover, the present simulation provided an explanation of the dependence of final recrystallized grain size on initial grain size when it is decreased to a critically small value. This modelling framework is also used to simulate the interaction between the dissolution of precipitates and grain coarsening of matrix in the nickel alloys. The simulation results show that the decreasing dissolution temperature of precipitate slow down the matrix coarsening kinetics obviously. This provides an quantitative tool to predict and control the local microstructure of nickel alloy disk. In summary, the mesoscopic modelling can be used to investigate more kinetic details of microstructure evolution and engineering optimization for thermo-mechanical process.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3