Affiliation:
1. Airlangga University
2. Biomedical Engineering Study Program, Faculty of Science and Technology, Universitas Airlangga
3. Universitas Surabaya
4. Universitas Airlangga
Abstract
Intraperitoneal adhesion is a serious case that often occurs with a prevalence of 90-97 % after undergoing gynecological surgery and laparotomy. This study aims are to characterized the hydrogel and identified the optimal composition of Hyaluronic acid (HA) - N, O-carboxymethyl chitosan (NOCC) as an anti-adhesion biomaterial barrier. The synthesis method involved firstly the synthesis of aldehyde derivative of hyaluronic acid (AHA) and also the conversion of chitosan into its derivative, N,O-carboxymethyl chitosan. These two compounds were mixed in various compositions and crosslinked to form N, O-carboxymethyl chitosan (NOCC) /AHA. Fourier-transform infrared spectroscopy has confirmed that the functional groups found -C = O stretching at 1644 cm-1 indicating the hyaluronic acid and carboxymethyl group (-CH2COOH) in 1380 cm-1 which indicate the presence of chitosan. The crosslink is evidenced by the group C = N stretching at a wavenumber of about 1630 cm-1. The best composition of intraperitoneal anti-adhesion is the ratio of hyaluronic acid: chitosan at 30:10 mg/ml. The swelling test is showed a swelling ratio of around 211.8 % in accordance with the standard as intraperitoneal anti-adhesion. Hydrogel has a degradation rate up to 86.87 % on day 10, and this is in accordance with the standard as intraperitoneal anti-adhesion. Cytotoxicity assay showed that hydrogel was nontoxic with a percentage of 92.9 % cell viability. The newly developed hyaluronic acid-carboxymethyl chitosan has characteristics that conform to the criteria of an intraperitoneal anti-adhesion.
Publisher
Trans Tech Publications, Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献