Development of Aldehyde Hyaluronic Acid - N,O-Carboxymethyl Chitosan based Hydrogel for Intraperitoneal Antiadhesion Application

Author:

Widiyanti Prihartini1,Priskawati Yolanda Citra Ayu2,Wibowo Herry3,Ady Jan4

Affiliation:

1. Airlangga University

2. Biomedical Engineering Study Program, Faculty of Science and Technology, Universitas Airlangga

3. Universitas Surabaya

4. Universitas Airlangga

Abstract

Intraperitoneal adhesion is a serious case that often occurs with a prevalence of 90-97 % after undergoing gynecological surgery and laparotomy. This study aims are to characterized the hydrogel and identified the optimal composition of Hyaluronic acid (HA) - N, O-carboxymethyl chitosan (NOCC) as an anti-adhesion biomaterial barrier. The synthesis method involved firstly the synthesis of aldehyde derivative of hyaluronic acid (AHA) and also the conversion of chitosan into its derivative, N,O-carboxymethyl chitosan. These two compounds were mixed in various compositions and crosslinked to form N, O-carboxymethyl chitosan (NOCC) /AHA. Fourier-transform infrared spectroscopy has confirmed that the functional groups found -C = O stretching at 1644 cm-1 indicating the hyaluronic acid and carboxymethyl group (-CH2COOH) in 1380 cm-1 which indicate the presence of chitosan. The crosslink is evidenced by the group C = N stretching at a wavenumber of about 1630 cm-1. The best composition of intraperitoneal anti-adhesion is the ratio of hyaluronic acid: chitosan at 30:10 mg/ml. The swelling test is showed a swelling ratio of around 211.8 % in accordance with the standard as intraperitoneal anti-adhesion. Hydrogel has a degradation rate up to 86.87 % on day 10, and this is in accordance with the standard as intraperitoneal anti-adhesion. Cytotoxicity assay showed that hydrogel was nontoxic with a percentage of 92.9 % cell viability. The newly developed hyaluronic acid-carboxymethyl chitosan has characteristics that conform to the criteria of an intraperitoneal anti-adhesion.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3