Affiliation:
1. Bartin University
2. Jozef Stefan Institute
Abstract
Titanium and its alloys are widely used in aerospace and aviation industries because of their high strength-to-weight ratio, high fracture resistance and corrosion resistance at elevated temperatures. However, chemical reactivity and low thermal conductivity of these alloys lead to adhesion and diffusion wears on carbide tools, respectively. In addition, fluctuations in cutting forces occur during the cutting process due to chip shear band formation; and chipping wear is observed at the tool cutting edge as a result. Therefore, machining of these alloys is a challenge for researchers. A common method to increase the lifetime of carbide tools is to coat them with a thin hard coating. In this study, a nanolayer AlTiN/TiN coating was deposited on carbide cutting tools using an industrial magnetron sputtering system in order to enhance their wear resistance and lifetime in milling of Ti6Al4V. The cutting tests with the coated tools were performed at a cutting speed of 50 m/min, feed rate of 0.1 mm/tooth and depth of cut of 1 mm under dry conditions. Tool wear and surface roughness on the workpiece were measured and recorded as a function of cutting distance. Wear mechanisms and types were revealed using optical and scanning electron microscopy and energy dispersive spectroscopy. It was found that the nanolayer AlTiN/TiN coated tools provide higher wear resistance and 4 times longer lifetime when compared to uncoated ones. The main observed wear types are notch wear and build-up edge formation on the cutting edge. A slight improvement in surface roughness of the workpiece was observed with the nanolayered coating.
Publisher
Trans Tech Publications, Ltd.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献