Study of Nanolayer AlTiN/TiN Coating Deposition on Cemented Carbide and its Performance as a Cutting Tool

Author:

Caliskan Halil1,Altas Emre1,Panjan Peter2

Affiliation:

1. Bartin University

2. Jozef Stefan Institute

Abstract

Titanium and its alloys are widely used in aerospace and aviation industries because of their high strength-to-weight ratio, high fracture resistance and corrosion resistance at elevated temperatures. However, chemical reactivity and low thermal conductivity of these alloys lead to adhesion and diffusion wears on carbide tools, respectively. In addition, fluctuations in cutting forces occur during the cutting process due to chip shear band formation; and chipping wear is observed at the tool cutting edge as a result. Therefore, machining of these alloys is a challenge for researchers. A common method to increase the lifetime of carbide tools is to coat them with a thin hard coating. In this study, a nanolayer AlTiN/TiN coating was deposited on carbide cutting tools using an industrial magnetron sputtering system in order to enhance their wear resistance and lifetime in milling of Ti6Al4V. The cutting tests with the coated tools were performed at a cutting speed of 50 m/min, feed rate of 0.1 mm/tooth and depth of cut of 1 mm under dry conditions. Tool wear and surface roughness on the workpiece were measured and recorded as a function of cutting distance. Wear mechanisms and types were revealed using optical and scanning electron microscopy and energy dispersive spectroscopy. It was found that the nanolayer AlTiN/TiN coated tools provide higher wear resistance and 4 times longer lifetime when compared to uncoated ones. The main observed wear types are notch wear and build-up edge formation on the cutting edge. A slight improvement in surface roughness of the workpiece was observed with the nanolayered coating.

Publisher

Trans Tech Publications, Ltd.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3