The Fabrication of Large-Area Upgraded Metallurgical Grade Multi-Crystalline Silicon Solar Cells in a Production Line

Author:

Chen Teng1,Zhao You Wen1,Don Zhi Yuan1,Wang Jun1,Liu Tong1,Xie Hui1

Affiliation:

1. Chinese Academy of Sciences

Abstract

Upgraded metallurgical grade (UMG) silicon has been researched both on the purification methods and its material properties for years, indicating that it is the most promising choice as low-cost feedstock for photovoltaics. In this work, UMG multi-crystalline silicon (mc-Si) prepared by cold crucible refining and electron beam melting was investigated. Solar cells based on such silicon wafers were fabricated in a 156 x 156 mm2 production line and their photovoltaic properties were characterized. Compared with the conventional mc-Si solar cells fabricated in the same commercial production line, the UMG mc-Si solar cells with two busbars presented higher average open circuit voltage (Voc) and average fill factor (FF), which were 628 mV and 78.6 % separately. Although the UMG mc-Si solar cells showed a lower shot-circuit current density (Jsc) of 32.7 A/cm2 in the average and an early reverse breakdown voltage at around 11 V which was due to higher impurities content. The average conversion efficiency of the UMG mc-Si solar cells reached 16.14 %, and the highest conversion efficiency was up to 16.31 %. In addition, the UMG mc-Si solar cells presented relatively low light induced degradation (LID) due to the material properties. Consequently, in consideration of low cost, our UMG mc-Si solar cells substantially met the requirements of commercial manufacturing and had a great potential application for photovoltaic industry.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3