Affiliation:
1. Technical University of Denmark
Abstract
Metals deformed to high and ultrahigh strains are characterized by a nanoscale microstructure, a large fraction of high angle boundaries and a high dislocation density. Another characteristic of such a microstructure is a large stored energy that combines elastic energy due to dislocations and boundary energy. Parameters of the deformed microstructure significantly affect annealing processes such as recovery and recrystallization. For example, the recovery rate can be significantly increased after high strain deformation and restoration may occur as either discontinuous recrystallization or structural coarsening. A characterization and analysis of deformed and annealed microstructures presented in this work covers Al, Ni, Cu and Fe heavily deformed by rolling, accumulative roll bonding (ARB), equal channel angular extrusion (ECAE) and high pressure torsion (HPT). The important effect of recovery on subsequent restoration processes is discussed along with the effect of heterogeneities both on the local scale and on the sample scale.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献