Enhanced Microhardness and Corrosion Performance of Additively Manufactured Inconel 718 Specimens through Nanostructuring by Severe Plastic Deformation

Author:

Yusuf Shahir Y. Mohd1ORCID,Musa Nur Hidayah1,Mazlan Nurainaa1,Gao Nong2

Affiliation:

1. Universiti Teknologi Malaysia Malaysia-Japan International Institute of Technology (UTM-MJIIT)

2. University of Southampton

Abstract

Severe plastic deformation (SPD) processes, particularly high-pressure torsion (HPT) have been increasingly applied to metallic specimens fabricated by laser powder bed fusion (L-PBF) additive manufacturing (AM) for enhancing their mechanical and functional properties through nanoscale grain refinement (≤ 100 nm). In this study. L-PBF AM-fabricated Inconel 718 (IN 718) specimens are initially subjected to 10 HPT revolutions to produce nanosized grains. Subsequently, microstructural characterisation, as well as hardness and electrochemical tests are conducted to evaluate the evolution of microstructures, hardness, and corrosion performance of the as-received and HPT-processed specimens by using various microscopy, Vickers microhardness (HV) measurements, and corrosion performance, respectively. The results reveal an average grain size of ~ 46 nm, dense dislocation networks, and nanotwins after 10 HPT processing, which contribute to the two-fold hardness increase compared to the as-received condition. Such microstructures also contributed to the overall improved corrosion performance after 10 HPT processing, as quantified by the 83% and 73% reduction in corrosion rate and pitting potential, respectively.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3