Research of the models for sign gesture recognition using 3D convolutional neural networks and visual transformers

Author:

,Chornenkyi V. Ya.ORCID,Kazymyra I. Ya.ORCID,

Abstract

The work primarily focuses on addressing the contemporary challenge of hand gesture recognition, driven by the overarching objectives of revolutionizing military training methodologies, enhancing human-machine interactions, and facilitating improved communication between individuals with disabilities and machines. In-depth scrutiny of the methods for hand gesture recognition involves a comprehensive analysis, encompassing both established historical computer vision approaches and the latest deep learning trends available in the present day. This investigation delves into the fundamental principles that underpin the design of models utilizing 3D convolutional neural networks and visual transformers. Within the 3D-CNN architecture that was analyzed, a convolutional neural network with two convolutional layers and two pooling layers is considered. Each 3D convolution is obtained by convolving a 3D filter kernel and summing multiple adjacent frames to create a 3D cube. The visual transformer architecture that is consisting of a visual transformer with Linear Projection, a Transformer Encoder, and two sub-layers: the Multi-head Self-Attention (MSA) layer and the feedforward layer, also known as the Multi-Layer Perceptron (MLP), is considered. This research endeavors to push the boundaries of hand gesture recognition by deploying models trained on the ASL and NUS-II datasets, which encompass a diverse array of sign language images. The performance of these models is assessed after 20 training epochs, drawing insights from various performance metrics, including recall, precision, and the F1 score. Additionally, the study investigates the impact on model performance when adopting the ViT architecture after both 20 and 40 training epochs were performed. This analysis unveils the scenarios in which 3D convolutional neural networks and visual transformers achieve superior accuracy results. Simultaneously, it sheds light on the inherent constraints that accompany each approach within the ever-evolving landscape of environmental variables and computational resources. The research identifies cutting-edge architectural paradigms for hand gesture recognition, rooted in deep learning, which hold immense promise for further exploration and eventual implementation and integration into software products.

Publisher

Lviv Polytechnic National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3