IMPROVEMENT OF CYCLIC CODES EFFECTIVENESS BY COMBINATORIAL OPTIMIZATION METHODS

Author:

Riznyk V. V.ORCID, ,Skrybaylo-Leskiv D. Yu.,

Abstract

The methods of improving the cyclic codes efficiency constructed on the basis of combinatorial configurations of the type "ideal ring bundles" (IRB) s by three factors – correction ability, power of coding method and complexity of the decoding procedure are considered. The method is based on the principle of combinatorial optimization, grounded on the algebraic theory of ordered integer sequences with a circular structure, all the numbers, as well as all sums of consecutive numbers exhaust the value sofnatural row numbers. Two theoretically grounded approaches to increase of noise immunity of cyclic codes are offered: implementation of optimized IRB-code, as well as monolithic and group one. Optimized cyclic IRB-code favorably differs from the rest of the codes of this class by the highest correction capacity at the same length of code words. Optimized IRB-codes constitute a large group of cyclic codes designed on a combinatorial models with selection of corresponding relationships between the parameters of the code to achieve its specified technical characteristics. Noise protected monolithic and group codes belong to the group of self-correcting codes with a ring structure and probabilistic assessment of the level of noise protection. This property allow so instant lydetect a particular part or all invalid characters in the code word by the majority principle. Mathematical calculations have been performed to calculate the optimized ratios between the parameters of cyclic IRB-codes, under which they reach maximum correction capacity. The algorithm of constructing and increasing the power of coding methods of optimized noise-resistant IRB-codes is examined and analyzed. The concrete examples of increase efficiency of combinatorial optimization cyclic codes methods with appropriate calculations and tables are given. The comparative analysis of the IRB-codes with the Golay codes and Bose – Chaudhuri – Hocquenghe (BCH) codes with respect to correction ability, power encoding method and computational complexity of decoding procedures is carried out. The advantages and disadvantages of cyclic, and ringmonolithic and group IRB-codes in comparison with classical analogues are determined. The prospect so fusing the research results in the problems of information and communication technologies are outlined.

Publisher

Lviv Polytechnic National University

Reference39 articles.

1. Akulinichev, Iu. P. (2010). Teoriia elektricheskoi sviazi. Tutorial. St. Petersburg: Lan, 240 p. [In Russian].

2. Banket, V. L., Ivashchenko, P. V., & Ishchenko, M. O. (2011). Zavadostiike koduvannia v telekomunikatsiinykh systemakh. Odesa: ONAZ im. O. S. Popova, 100 p. [In Ukrainian].

3. Banket, V. L., Ivashhenko, P. V., & Geer, A. E. (1996). Tcifrovye metody peredachi informatcii v sputnikovykh sistemakh sviazi. Odessa: UGAS, 180 p. [In Russian].

4. BCH code. (2020). From Wikipedia, the free encyclopedia. Retrieved from: https://en.wikipedia.org/wiki/BCH_code

5. Berrou C., Glavieux A., & Thitiumjshima, P. (1993). Near Shannon limit error correcting coding: Turbo codesiu International Conf. on Commun. Geneva, Switzerland, May 1993, pp. 1064-1070.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3