Density based fuzzy support vector machine: application to diabetes dataset

Author:

El Ouissari A., ,El Moutaouakil K.,

Abstract

In this work, we propose a deep prediction diabetes system based on a new version of the support vector machine optimization model. First, we determine three types of patients (noisy, cord, and interior) basing on specific parameters. Second, we equilibrate the clinical data sets by suppressing noisy and cord patients. Third, we determine the support vectors by solving an optimization program with a reasonable size. Our system is performed on the well-known diabetes dataset PIMA. The experimental results show that the proposed method improves the prediction accuracy and the proposed system significantly outperforms all other versions of SVM as well as literature methods of classification.

Publisher

Lviv Polytechnic National University

Subject

Computational Theory and Mathematics,Computational Mathematics

Reference32 articles.

1. WHO. Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 1 June 2020).

2. IDF Diabetes Atlas, A.D. Type 2 Diabetes. Available online: https://www.idf.org/aboutdiabetes/type-2-diabetes.html (accessed on 20 March 2020).

3. El Moutaouakil K., Touhafi A. A New Recurrent Neural Network Fuzzy Mean Square Clustering Method. 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech). 1-5 (2020).

4. Vapnik V. N. The Nature of Statistical Learning Theory. Springer Science and Business Media (1999).

5. A tutorial on support vector machines for pattern recognition;Burges C. J.;Data Mining and Knowledge Discovery,1998

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3