ASSESSMENT OF RADIATION HAZARD OF CONCRETE AND BACKGROUND RADIATION INDOORS

Author:

,Khobotova ElinaORCID,Hraivoronska InnaORCID, ,Ihnatenko MarynaORCID,

Abstract

Simulation of the dose rate of building materials γ-radiation in the premises of different designs has revealed the minimal levels of human exposure. It was determined that the exposure dose rate at the given points of a single room depends on the content of natural radionuclides in construction materials and the changing geometry of a person's exposure in the premises. When the exposure dose rate of γ-radiation above an individual plate is determined, it is conventionally divided into the discrete sources, the dose rate from several plates is summed up. It is shown that near a vertical wall with a uniform content of natural radionuclides the exposure dose is higher where the wall is thicker. When radiation is emitted from the floor of a certain thickness, a maximum exposure dose rate occurs, which becomes greater when the layer of half attenuation of the material increases. The exposure dose rate also increases in the corners of the room: the higher the room the greater the dose rate. The results obtained predict the doses of human exposure at various points of the room, which determines the conditions for a person’s existence and the support staff work, the rational arrangement of workplaces and machinery, and the optimization of the operating modes of precision equipment.

Publisher

Lviv Polytechnic National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3