The influence of important factors on the distribution of heat flows in elements of drum brakes of vehicles

Author:

Hudz HustavORCID, ,Hlobchak MykhailoORCID,

Abstract

The movement of motor vehicles at high speeds is impossible without a braking system capable of ensuring high braking efficiency. It has been established that the most unstable link of the braking system is the brake mechanism, since from the energy point of view, braking with friction brakes is the process of converting part of the mechanical energy of the motor vehicle into heat. Braking is a long process during which many counterbody parameters change, in particular, thermophysical parameters due to temperature changes, friction coefficient, etc. If, under these circumstances, the surface and volume temperatures exceed the permissible values, then the frictional properties of the friction pairs and the conditions of the interaction of the parts change, which leads to a change in the characteristics of the brake mechanisms and the brake system as a whole. The standards of most countries and international prescriptions regulate braking performance meters not only for one-time emergency braking with cold brakes but also for emergency braking performed after the conversion of a given amount of energy into heat during a given time. It was found that the preservation of the necessary braking efficiency after the conversion of a given amount of energy into heat will be ensured only if the braking system has sufficient energy capacity. The object of the research is the distribution of heat flows in the elements of the brake mechanism, which determine the critical temperature of the friction surfaces. It was established that F. Charron's formula cannot correctly estimate such a distribution due to taking into account only the thermophysical properties of materials of friction pairs. It is shown that the influence of the design parameters of the brake and its modes of operation on the distribution of heat flows in the drum brake of a motor vehicle can also be estimated on grid thermal models with the involvement of the "Fourier-2xyz" software complex.

Publisher

Lviv Polytechnic National University

Subject

General Medicine

Reference15 articles.

1. 1. Bulgakov, M., Shuklynov, S., Uzhva, A., Leontiev, D., Verbitskiy, V., Amelin, M., & Volska, O. (2020). Mathematical model of the vehicle initial rectilinear motion during moving uphill. In IOP Conference Series: Materials Science and Engineering, 776(1), (pp. 012022). doi: 10.1088/1757-899X/776/1/012022 (in English).

2. 2. Shuklinov, S., Leontiev, D., Makarov, V., Verbitskiy, V., & Hubin, A. (2021). Theoretical Studies of the Rectilinear Motion of the Axis of the Locked Wheel After Braking the Vehicle on the Uphill. In Mathematical Modeling and Simulation of Systems (MODS'2020) Selected Papers of 15th International Scientific-practical Conference, (pp. 69-81). doi: 10.1007/978-3-030-58124-4_7 (in English).

3. 3. Bogomolov, V. A., Klimenko, V. I., Leontiev, D. N., Ponikarovska, S. V., Kashkanov, A. A., & Kucheruk, V. Y. (2021). Plotting the adhesion utilization curves for multi-axle vehicles. Bulletin of the Karaganda university. 1(101): 35-45. doi: 10.31489/2021Ph1/35-45 (in English).

4. 4. Leontiev, D., Klimenko, V., Mykhalevych, M., Don, Y., & Frolov, A. (2019). Simulation of working process of the electronic brake system of the heavy vehicle. In Mathematical Modeling and Simulation of Systems: Selected Papers of 14th International Scientific-Practical Conference, (pp. 50-61). doi: 10.1007/978-3-030-25741-5_6 (in English).

5. 5. Diachuk, M., Lykhodii, O., Leontiev, D., Ryzhykh, L., & Aleksandrov, Y. V. (2022). Dynamic modeling of semitrailer trucks equipped by steered wheels. Journal of Mechanical Engineering and Sciences, 16(1), 8691-8705. doi: 10.15282/jmes.16.1.2022.04.0687 (in English).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3