Analysis of kinematic characteristics of a mobile caterpillar robot with a SCARA-type manipulator

Author:

Korendiy VitaliyORCID, ,Kachur OleksandrORCID,Boikiv MykolaORCID,Novitskyi YuriiORCID,Yaniv OleksandrORCID, , , ,

Abstract

Automation and robotization of various production and technological processes in many industries is one of the leading trends in the development of modern society. Industrial robots have recently become quite widespread, and it is almost impossible to imagine any modern production in the fields of mechanical engineering (machine building), instrumentation, pharmaceuticals, food, chemical industries, etc., without robotic complexes. Over the past few decades, another area of robotics has emerged: autonomous mobile robots. It combines research in mechanics, electronics, and computer technologies, including artificial intelligence. Among the most common applications of autonomous mobile robots are the performance of various technological operations in places that are dangerous to human life (radiation, biological or chemical contamination) or uninhabitable (space, sea depths, volcanic craters, etc.). Mobile robots have also proven themselves in rescue operations during cataclysms and natural disasters, anti-terrorist operations, military operations, mine clearance, etc. Given the urgency of the issue of mobile robotics development, this article proposes a new design of an autonomous robotic complex built on the basis of a tracked chassis and equipped with a SCARA-type manipulator. The main task of the developed robot is to perform various technological operations in places where human presence is dangerous or impossible, in particular, when performing demining tasks. In the course of the research, the kinematics of the manipulator was analyzed in detail to determine its working area, and the kinematic parameters of the tracked chassis were experimentally tested while it was moving over rough terrain. The obtained results can be used to further improve the design and control system of the robot and manipulator and in the process of determining the specific technological tasks that will be assigned to this robotic platform.

Publisher

Lviv Polytechnic National University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3