3D Indoor Mapping System Using 2D LiDAR Sensor for Drones

Author:

R. Shahrin M.,H. Hashim F.,M.D.W. Zaki W.,Hussain A.,T. Raj T.

Abstract

Most 3D scanners are heavy, bulky and costly. These are the major factors that make them irrelevant to be attached to a drone for autonomous navigation. With modern technologies, it is possible to design a simple 3D scanner for autonomous navigation. The objective of this study is to design a cost effective 3D indoor mapping system using a 2D light detection and ranging (LiDAR) sensor for a drone. This simple 3D scanner is realised using a LiDAR sensor together with two servo motors to create the azimuth and elevation axes. An Arduino Uno is used as the interface between the scanner and computer for the real-time communication via serial port. In addition, an open source Point-Cloud Tool software is used to test and view the 3D scanner data. To study the accuracy and efficiency of the system, the LiDAR sensor data from the scanner is obtained in real-time in point-cloud form. The experimental results proved that the proposed system can perform the 2D and 3D scans with tolerable performance.  

Publisher

Science Publishing Corporation

Subject

Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment Contribution of an Architectural Indoor Healthy Status via Biosensors Particles Spatial Simulation;Lecture Notes in Computer Science;2024

2. Volume Estimation of Raw Materials inside the Silo using Convex Hull Method;2022 IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM);2022-12-01

3. Vision-less autonomous tracking and landing of a micro aerial vehicle on a slow maneuvering ground moving target using distance sensors;Multimedia Tools and Applications;2022-02-16

4. A rapid method for estimating the angle of repose and volume of grain piles using terrestrial laser scanning;Remote Sensing Letters;2020-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3