Scientific Aspects of Identification Criteria for Fruit Distillates

Author:

Dubinina Elena1,Krikunova Ludmila1,Peschanskaya Violetta1,Trishkaneva Marina2

Affiliation:

1. All-Russian Research Institute of Brewing, Non-alcoholic and Wine Industry

2. All-Russian Scientific Research Institute of Canning Technology

Abstract

Introduction. Beverages based on fruit distillates belong to elite alcoholic drinks. As a result, there is a high risk of counterfeit. Controlled indicators do not allow identifying distillates by the type of raw material. The research objective was to develop scientifically based identification criteria for fruit distillates. Study objects and methods. The research featured ten fruits and their distillates. It involved three schemes of pre-distillation processing: pulp fermentation, juice fermentation, and pulp fermentation with subsequent maceration. The biochemical composition of raw materials was assessed by the HPLC analysis of mass concentration of sugars, titratable acids, pH, mono- and disaccharides, free organic acids and amino acids, as well as by the sugar-acid index. The concentration of higher alcohols in the distillates was determined using gas chromatography. Results and discussion. The research revealed significant differences in the biochemical composition of raw materials, which made it possible to divide it into groups depending on the methods of pre-distillation processing. The groups can be identified by the ratio of the concentrations of the main higher alcohols: 1-propanol to the sum of isobutanol and isoamylol. The revealed differences were caused by the peculiarities of the ratio of organic acids and amino acids. For the distillates of Cornelian cherry, black currant, cherry-plum, plum, cherry, and apricot, the ratio of 1-propanol to the sum of isobutanol and isoamylol was within the following ranges: 0.02–0.06, 0.08–0.10, 0.30–0.35, 0.47–0.51, 0.55–0.65, and 0.69–0.92, respectively. The method of preparing raw materials for distillation did not affect the values of the identification indicator. Conclusion. The ratio of 1-propanol to the sum of isobutanol and isoamylol could serve as an indicator for the identification of distillates of Cornelian cherries, black currant, cherry-plum, plum, cherry, and apricot. However, it proved useless for distillates of pears, raspberries, tangerines, and mulberries, since its values were within comparable limits. Therefore, the research requires a GC-MS analysis to determine the concentration and ratios of other specific volatile components in other raw materials.

Publisher

Kemerovo State University

Subject

Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science

Reference24 articles.

1. The effect of distillation conditions and alcohol content in “heart” fractions on the concentration of aroma volatiles and undesirable compounds in plum brandies / M. Balcerek [et al.] // Journal of the Institute of Brewing. 2017. Vol. 123. № 3. P. 452–463. https://doi.org/10.1002/jib.441., Balcerek M, Pielech-Przybylska K, Patelski P, Dziekonska-Kubczak U, Strak E. The effect of distillation conditions and alcohol content in “heart” fractions on the concentration of aroma volatiles and undesirable compounds in plum brandies. Journal of the Institute of Brewing. 2017;123(3):452–463. https://doi.org/10.1002/jib.441.

2. Spirit distillation strategies for aroma improvement using column reflux / J. J. Rodrĭguez-Bencomo [et al.] // Food and Bioprocess Technology. 2016. Vol. 9. № 11. P. 1885–1892. https://doi.org/10.1007/s11947-016-1776-0., Rodrĭguez-Bencomo JJ, Perez-Correa JR, Orriols I, Lopez F. Spirit distillation strategies for aroma improvement using column reflux. Food and Bioprocess Technology. 2016;9(11):1885–1892. https://doi.org/10.1007/s11947-016-1776-0.

3. Vyviurska O., Zvrškovcová H., Špánik I. Distribution of enantiomers of volatile organic compounds in selected fruit distillates // Chirality. 2017. Vol. 29. № 1. P. 14–18. https://doi.org/10.1002/chir.22669., Vyviurska O, Zvrškovcová H, Špánik I. Distribution of enantiomers of volatile organic compounds in selected fruit distillates. Chirality. 2017;29(1):14–18. https://doi.org/10.1002/chir.22669.

4. Agalarov R., Ragimov R., Gasanov R. Characterization of traditional fruit brandy produced in Azerbaijan // Advances in Biology and Earth Sciences. 2017. Vol. 2. № 3. P. 263–270., Agalarov R, Ragimov R, Gasanov R. Characterization of traditional fruit brandy produced in Azerbaijan. Advances in Biology and Earth Sciences. 2017;2(3):263–270.

5. Содержание пектинов в различных видах плодовых культур и их физико-химические свойства / Д. Р. Созаева [и др.] // Вестник Воронежского государственного университета инженерных технологий. 2016. Т. 68. № 2. С. 170–174. https://doi.org/10.20914/2310-1202-2016-2-170-174., Sozaeva DR, Dzhaboeva AS, Shaova LG, Tsagoeva OK. The pectin content in different types of fruit crops and their physicochemical characteristics. Proceedings of the Voronezh State University of Engineering Technologies. 2016;68(2):170–174. (In Russ.). https://doi.org/10.20914/2310-1202-2016-2-170-174.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3