Improvement of Technological Indicators of Semi-Finished Products of Sugar Production from Bacterially Infected Sugar Beet

Author:

Belyaeva Lubov1,Pruzhin Michail1,Ostapenko Alla1,Gurova Valentina1

Affiliation:

1. Federal Agricultural Kursk Research Center

Abstract

Introduction. Technological aids play a special role in sugar production technology, but their complex effectiveness requires a comprehensive and in-depth study. The research objective was to establish the patterns of change in the technological indicators of semi-finished products obtained from bacterially infected sugar beets with the combined use of an enzyme preparation, antimicrobial agent, and defoamer. Study objects and methods. The study involved such semi-finished products as juice (diffusion, pre-defecated, first and second saturation) and syrup, the quality of which was determined according to standard methods. The laboratory experiment was carried out on the basis of the second-order D-optimal Box-Behnken plan for three factors at three levels. Results and discussion. The research revealed positive dynamics of the following technological indicators: sucrose content, deposition rate, turbidity, chromaticity, and general purification effect. The sugar beet had the second degree of infection with mucous bacteriosis. Purified juice underwent lime-carbon dioxide purification and thickening under the combination of enzyme preparation Dextrasept 2, antimicrobial agent Betasept, and antifoam agent Voltes FSS 93. The greatest increase in sucrose at the level of 1.1% by DM weight was confirmed by a higher overall effect of purification of diffusion juice (2.2 %). The values of turbidity of the purified juice and syrup were below the threshold values. The low values resulted from the increase in the sedimentation rate of the pre-defective juice and the juice of the first saturation by an average of 4.1 and 3.2 times, respectively, due to the effective removal of high molecular weight compounds. The share of the enzyme preparation was 40–71%, antimicrobial agent – 19–49%, defoamer – 1.6–6.5%. The values of the multicriteria optimization parameter corresponded with technological indicators. The optimal combination (per 1000 tons of beets) included 6–8 kg of Dextrasept 2, 1.5–2.0 kg of Betasept, and 15–20 kg of Voltes FSS 93. As a result, the yield of white sugar increased by 0.25%. Conclusion. The regression dependencies can be recommended for predicting the main technological indicators of semi-finished products. The resulting data makes it possible to determine the effectiveness of the combined use of an enzyme preparation, antimicrobial agent, and defoamer in sugar production. Further research will identify the patterns of multifactorial interaction of these preparations.

Publisher

Kemerovo State University

Subject

Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science

Reference20 articles.

1. Technological additives as an element of dry milk properties directed formation / A. G. Galstyan [et al.] // News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences. 2019. Vol. 4. № 436. P. 95–102. https://doi.org/10.32014/2019.2518-170X.102., Galstyan AG, Turovskaya SN, Ryabova AE, Illarionova EE, Semipyatniy VK, Radaeva IA, et al. Technological additives as an element of dry milk properties directed formation. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences. 2019;4(436):95–102. https://doi.org/10.32014/2019.2518-170X.102.

2. Старовойтова К. В., Терещук Л. В. Перспективы отечественного производства микроингредиентов // Техника и технология пищевых производств. 2016. Т. 41. № 2. С. 77–83., Starovoytova KV, Terechuk LV. Prospects of domestic micro-ingredients production. Food Processing: Techniques and Technology. 2016;41(2):77–83. (In Russ.).

3. Robles-Gancedo S., López-Díaz T. M., Otero A. Identification of main bacteria and fungi found during beet sugar extraction in Spanish factories // International Sugar Journal. 2014. Vol. 116. № 1386., Robles-Gancedo S, López-Díaz TM, Otero A. Identification of main bacteria and fungi found during beet sugar extraction in Spanish factories. International Sugar Journal. 2014;116(1386).

4. Образование биологических пленок микроорганизмов на пищевых производствах / А. В. Тутельян [и др.] // Вопросы питания. 2019. Т. 88. № 3. С. 32–43. https://doi.org/10.24411/0042-8833-2019-10027., Tutelyan AV, Yushina YuK, Sokolova OV, Bataeva DS, Fesyun AD, Datiy AV. Formation of biological films by microororganisms in food productions. Problems of Nutrition. 2019;88(3):32–43. (In Russ.). https://doi.org/10.24411/0042-8833-2019-10027.

5. Методы борьбы с биологическими пленками на пищевых производствах / А. В. Тутельян [и др.] // Молочная промышленность. 2020. № 11. С. 48–53., Tutelyan AV, Romanova YuM, Manevich BV, Yushina YuK, Fedorova LS, Sinitsyna OA, et al. Biofilm control methods in food production. Dairy Industry. 2020;(11):48–53. (In Russ.).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fractionation of Bulk Food Products;Food Processing: Techniques and Technology;2022-04-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3