Commercial Strategizing of Innovations in Russia’s as Part of Data Economy

Author:

Tishchenko Elena1,Slavyantsev Maksim2,Voytenko Ivan1

Affiliation:

1. Lomonosov Moscow State University

2. “Alpha Reem Consulting” LLC

Abstract

Professor A.G. Aganbegyan defines a new transport and logistics infrastructure as a key factor of economic growth, welfare, and transformation of Russia’s socio-economic system. This new infrastructure should include two-way highways, high-speed railways, regional airports, and major logistics centers in key transport hubs. Unfortunately, such projects have a very long payback cycle that may last up to 20–25 years. Moreover, the investments may be as high as 3 trillion rubles annually. As a result, transport and logistics suppliers alone cannot support such a large-scale initiative. Domestic logistics is currently going through all the stages from 1PL to 5PL, which places very high requirements on the multimodality of transport and logistics in physical infrastructure, software, and hardware. These processes encourage research cooperation between industries aimed at developing novel interoperable R&D solutions. Russian transport and logistics infrastructure depends heavily on the railway industry: its main operational task is to maintain passenger and cargo traffic, as well as to provide safety. Under the current sanctions, Russian railroads face the challenge of developing and scaling advanced scientific and technical reserves. Technological independence relies on end-to-end production technologies, e.g., artificial intelligence algorithms, digital twins, etc., which impose requirements on data interoperability. This article describes the potential that domestic railway enterprises have for improving commercialization of innovations and technology transfer. The authors used the theory of strategy and the methodology of strategizing developed by Professor V.L. Kvint to design several recommendations on how railroad companies may increase their economic motivation to overcome various barriers.

Publisher

Kemerovo State University

Reference40 articles.

1. Аганбегян А. Г. Опыт зарубежных стран по ускоренному социально-экономическому росту и его возможное использование для России // Стратегирование: теория и практика. 2024. Т. 4. № 1. С. 1–26. https://doi.org/10.21603/2782-2435-2024-4-1-1-26, Aganbegyan AG. Foreign experience in strategizing accelerated socio-economic development and options for its application in Russia. Strategizing: Theory and Practice. 2024;4(1):1–26. (In Russ.) https://doi.org/10.21603/2782-2435-2024-4-1-1-26

2. Бахвалов Л. А. Моделирование систем. М.: Московский государственный горный университет, 2006. 294 с., Bakhvalov LA. Modelirovanie system [System modeling]. Moscow: Moscow State Mining University; 2006. 294 p. (In Russ.)

3. Григорьева Н. Н. Проблемы и перспективы внедрения инноваций на железнодорожном транспорте // Транспортная инфраструктура Сибирского региона. 2018. Т. 2. С. 40–43., Grigorʹeva NN. Problemy i perspektivy vnedreniya innovatsiy na zheleznodorozhnom transporte [Problems and prospects for introducing innovations in railway transport]. Transportnaya infrastruktura Sibirskogo regiona [Transport Infrastructure in Siberia]. 2018;2:40–43. (In Russ.)

4. Журавлева Н. А. Проблемы внедрения цифровых технологий на транспорте // Транспорт Российской Федерации. 2019. Т. 82. № 3. С. 19–22., Zhuravleva NA. Problems of introduction of digital technologies in transport. Transport Rossiyskoy Federatsii [Transport in the Russian Federation]. 2019;82(3):19–22. (In Russ.)

5. Зудин Н. Н., Мухлисов Р. Р. Корпоративные инновационные системы в железнодорожной отрасли: страновая специфика и место в основных отраслевых моделях // Инновации. 2017. Т. 222. № 4. С. 93–102., Zudin NN, Mukhlisov RR. Corporate innovation systems in the rail industry: Country specifics and position in the main industry models. Innovations. 2017;222(4):93–102. (In Russ.)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3