Combination Cell Therapy Using Mesenchymal Stem Cells and Regulatory T-Cells Provides a Synergistic Immunomodulatory Effect Associated with Reciprocal Regulation of Th1/Th2 and Th17/Treg Cells in a Murine Acute Graft-Versus-Host Disease Model

Author:

Lim Jung-Yeon1,Park Min-Jung2,Im Keon-Il1,Kim Nayoun1,Jeon Eun-Joo1,Kim Eun-Jung1,Cho Mi-La2,Cho Seok-Goo13

Affiliation:

1. Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea

2. Rheumatism Research Center, Catholic Institutes of Medical Science, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea

3. Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea

Abstract

Mesenchymal stem cells (MSCs) have been considered to be an ideal cellular source for graft-versus-host disease (GVHD) treatment due to their unique properties, including tissue repair and major histocompatibility complex (MHC)-unmatched immunosuppression. However, preclinical and clinical data have suggested that the immunomodulatory activity of MSCs is not as effective as previously expected. This study was performed to investigate whether the immunomodulatory capacity of MSCs could be enhanced by combination infusion of regulatory T (Treg) cells to prevent acute GVHD (aGVHD) following MHC-mismatched bone marrow transplantation (BMT). For GVHD induction, lethally irradiated BALB/c (H-2d) mice were transplanted with bone marrow cells (BMCs) and spleen cells of C57BL/6 (H-2b) mice. Recipients were injected with cultured recipient-derived MSCs, Treg cells, or MSCs plus Treg cells (BMT + day 0, 4). Systemic infusion of MSCs plus Treg cells improved clinicopathological manifestations and survival in the aGVHD model. Culture of MSCs plus Treg cells increased the population of Foxp3+ Treg cells and suppressed alloreactive T-cell proliferation in vitro. These therapeutic effects were associated with more rapid expansion of donor-type CD4+CD25+Foxp3+ Treg cells and CD4+IL-4+ type 2 T-helper (Th2) cells in the early posttransplant period. Furthermore, MSCs plus Treg cells regulated CD4+IL-17+ Th17 cells, as well as CD4+IFN-γ + Th1 cells. These data suggest that the combination therapy with MSCs plus Treg cells may have cooperative effects in enhancing the immunomodulatory activity of MSCs and Treg cells in aGVHD. This may lead to development of new therapeutic approaches to clinical allogeneic hematopoietic cell transplantation.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3