Plant Disease Detection using Deep Learning in Banana and Sunflower

Author:

H R Chetan,G S Rajanna,BR Sreenivasa,Yallappa Ganesh N

Abstract

In recent years plant disease detection and classification is finding a lot of scope in the field of agriculture. The use of image pre-processing along with deep learning techniques is making the role of farmers easy in the process of plant leaf disease detection. In this paper we propose a deep learning technique, ResNet-50 for the identification and classification of leaf diseases mainly in banana and sunflower. Images for the training and testing purpose are collected by visiting the farms and from village dataset for normal, leaf spot, leaf blight, powdery mildew, bunchy top, sigatoka, panama wilt. Pre-processing is done to remove eliminate the noise in the image by converting the RGB input to HSV image. Binary pictures are retrieved to separate the diseased and unaffected portions based on the hue and saturation components. A clustering method is utilized to separate the diseased region from the normal portion and the background. Classification of the disease is carried out using ResNet-50 algorithm. The experimental results obtained are compared with CNN, machine learning algorithms like SVM, KNN, DT and Ensemble algorithm like RF and XG booster. The proposed algorithm provided maximum efficiency compared to other algorithms.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plant leaf disease detection using hybrid feature extraction techniques;Archives of Phytopathology and Plant Protection;2024-02-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3