Study on the Influence of Knowledge-driven Technology on predicting consumer Repurchase Behaviour

Author:

Chen Yajing,Leong Yee Choy,Yiing Lee Shin,Xiao Yunxia

Abstract

Consumer purchase behaviour has become a potential research area in business analytics, as exploring micro-level details would increase the business's profitability. In this prospect, many MNCs and other enterprises harness contemporary computing technologies like Big Data Analytics, Deep Learning and Predictive Analytics to explore the latent knowledge in purchase patterns and customer behaviour. This work deploys a novel Multi-class Ada Boost (MAB) supported Convolutional Neural Network (CNN) to learn customer purchase behaviour by analysing the buying patterns and trends to predict the repurchases. The proposed model learns the trends sequentially as the CNN models are cascaded one after the other, thus preserving the contextual knowledge between the models. The proposed model is tested for its efficacy on Instacart Market Basket Analysis to predict whether the customer is repurchasing the same product. The performance of the proposed model is compared with another state of art Machine Learning algorithms like Logistic Regression (LR), Support Vector Machines (SVM), Random Forest (RF) and XGBoost in terms of prediction accuracy, precision and F1-score. In addition, synthetic noise is induced into the dataset at various levels to analyse the model's efficacy in handling noisy data. These results indicate that the model shows better results than its peers, thus making it more suitable to predict customer repurchase behaviour and pattern.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3