A State-of-the-Art Review of Time Series Forecasting Using Deep Learning Approaches

Author:

Chandrasekaran Radhika,Kumar Paramasivan Senthil

Abstract

Time series forecasting has recently emerged as a crucial study area with a wide spectrum of real-world applications. The complexity of data processing originates from the amount of data processed in the digital world. Despite a long history of successful time-series research using classic statistical methodologies, there are some limits in dealing with an enormous amount of data and non-linearity. Deep learning techniques effectually handle the complicated nature of time series data. The effective analysis of deep learning approaches like Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long short-term memory (LSTM), Gated Recurrent Unit (GRU), Autoencoders, and other techniques like attention mechanism, transfer learning, and dimensionality reduction are discussed with their merits and limitations. The performance evaluation metrics used to validate the model's accuracy are discussed. This paper reviews various time series applications using deep learning approaches with their benefits, challenges, and opportunities.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Electrical and Electronic Engineering,Software,Information Systems,Human-Computer Interaction,Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Hyperparameter Tuning in Long Short-Term Memory for Crude Oil Price Prediction;2024 IEEE 6th Symposium on Computers & Informatics (ISCI);2024-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3