Biochar in copper reduction in black beans and soil decontamination

Author:

Fontanive Daniel Erison1ORCID,Rafaele Domenico Marcelo1ORCID,Andreola Daiane Sartori1ORCID,Stumm Juliano de Oliveira1ORCID,Serafini Rafaela Fatima2ORCID,Silva Danni Maisa da2ORCID,Luz Felipe Bonini da1ORCID,Ros Clovis Orlando Da1ORCID,Silva Rodrigo Ferreira da1ORCID

Affiliation:

1. Universidade Federal de Santa Maria, Brazil

2. Universidade Estadual do Rio Grande do Sul, Brazil

Abstract

When present in high concentrations in the soil, copper causes toxicity in plants, requiring the development of studies for the reduction or immobilization of this element. In this sense, biochar could be an alternative to immobilizing copper in the soil, aiming for lower levels of this element in the biomass and grains of black beans (Phaseolus vulgaris) used for human consumption. However, there are variations in biochar reactivity due to its source material and pyrolysis time. Therefore, the objective of the present study was to determine the effect of eucalyptus biochar on the availability of copper in the soil and on its contents in beans grown in contaminated soil. The experimental design was completely randomized in a 5 × 2 factorial arrangement, with five doses of biochar (0.0, 0.5, 1.0, 1.5, and 2.0% mm-1 of dry soil), soil without and with the addition of copper (1,000 mg kg-1 of dry soil), and with eight repetitions. The copper content available in the soil, root, aerial part, and bean grain; the chlorophyll index; and the bioconcentration and translocation factors of copper in the plant were evaluated. Biochar derived from eucalyptus residues decreases copper availability in contaminated soil. The copper levels in the roots, aerial part, and grains of P. vulgaris are reduced with the application of biochar to the soil, remaining in the grains, from a dose of 1.66% mm-1, below the maximum limit tolerable by Brazilian legislation.

Publisher

Zeppelini Editorial e Comunicacao

Subject

Colloid and Surface Chemistry,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3