Intelligent robust control of redun-dant smart robotic arm Pt II: Quantum computing KB optimizer

Author:

Ulyanov Sergey Victorovich

Abstract

In the first part of the article, two ways of fuzzy controller’s implementation showed. First way applied one controller for all links of the manipulator and showed the best performance. However, such an implementation is not possible in complex control objects, such as a planar redundant manipulator with seven degrees of freedom (DoF). The second way use of separated control when an independent fuzzy controller controls each link. The decomposition control due to a slight decrease in the quality of management has greatly simplified the processes of creating and placing knowledge bases. In this paper (Part II), the advantages and limitations of intelligent control systems based on soft computing technology described. To eliminate the mismatch of the work of separate independent fuzzy controllers, methods for self-organizing coordination control based on quantum computing technologies to create and design robust intelligent control systems for robotic manipulators with 3DOF and 7DOF described. Quantum fuzzy inference as quantum self-organization algorithm of imperfect KBs introduced. Quantum computational intelligence smart toolkit QCOptKBTMbased on quantum fuzzy inference applied. QCOptKBTM toolkit include quantum deep machine learning in on line. Successful engineering application of end-to-end quantum computing information technologies (as quantum sophisticated algorithms and quantum programming) in searching of solutions of algorithmic unsolved problems in classical dynamic intelligent control systems, artificial intelligence (AI) and intelligent cognitive robotics discussed. Quantum computing supremacy in efficient solution of intractable classical tasks as global robustness of redundant robotic manipulator in unpredicted control situations demonstrated. As result, the new synergetic self-organization information effect of robust KB design from responses of imperfect KBs (partial KB robustness cretead on toolkit SCOptKBTM in Pat I) fined.

Publisher

Bilingual Publishing Co.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3