Reference-free transcriptome exploration reveals novel RNAs for prostate cancer diagnosis

Author:

Pinskaya Marina1ORCID,Saci Zohra1,Gallopin Mélina2,Gabriel Marc1,Nguyen Ha TN23,Firlej Virginie45,Descrimes Marc1,Rapinat Audrey6,Gentien David6ORCID,Taille Alexandre de la457,Londoño-Vallejo Arturo8ORCID,Allory Yves9,Gautheret Daniel2ORCID,Morillon Antonin1ORCID

Affiliation:

1. ncRNA, Epigenetic and Genome Fluidity, Université Paris Sciences & Lettres (PSL), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut Curie, Research Center, Paris, France

2. Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France

3. Thuyloi University, Hanoi, Vietnam

4. Université Paris-Est Créteil, Créteil, France

5. Institut National de la Santé et de la Recherche Médicale, U955, Equipe 7, Créteil, France

6. Translational Research Department, Genomics Platform, Institut Curie, Université PSL, Paris, France

7. Assistance Publique – Hôpitaux de Paris, Hôpital Henri Mondor, Département d’Urologie, Créteil, France

8. Telomeres and Cancer, Université PSL, Sorbonne Université, CNRS, Institut Curie, Research Center, Paris, France

9. Compartimentation et Dynamique Cellulaire, Université PSL, Sorbonne Université, CNRS, Institut Curie, Research Center, Paris, France

Abstract

The use of RNA-sequencing technologies held a promise of improved diagnostic tools based on comprehensive transcript sets. However, mining human transcriptome data for disease biomarkers in clinical specimens are restricted by the limited power of conventional reference-based protocols relying on unique and annotated transcripts. Here, we implemented a blind reference-free computational protocol, DE-kupl, to infer yet unreferenced RNA variations from total stranded RNA-sequencing datasets of tissue origin. As a bench test, this protocol was powered for detection of RNA subsequences embedded into putative long noncoding (lnc)RNAs expressed in prostate cancer. Through filtering of 1,179 candidates, we defined 21 lncRNAs that were further validated by NanoString for robust tumor-specific expression in 144 tissue specimens. Predictive modeling yielded a restricted probe panel enabling more than 90% of true-positive detections of cancer in an independent The Cancer Genome Atlas cohort. Remarkably, this clinical signature made of only nine unannotated lncRNAs largely outperformed PCA3, the only used prostate cancer lncRNA biomarker, in detection of high-risk tumors. This modular workflow is highly sensitive and can be applied to any pathology or clinical application.

Funder

INCa-Ligue-ARC PAIR program

ICGex program

Next Generation Sequencing Platform, Genomics Platform

European Research Council

ITMO Cancer–Systems Biology

Agence Nationale de la Recherche “France Génomique”

Institut National du Cancer

Genomics Platform

Publisher

Life Science Alliance, LLC

Subject

Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3