De novo network analysis reveals autism causal genes and developmental links to co-occurring traits

Author:

Miller Catriona J1,Golovina Evgeniia1,Wicker Joerg S2ORCID,Jacobsen Jessie C34,O’Sullivan Justin M15678ORCID

Affiliation:

1. The Liggins Institute, The University of Auckland

2. School of Computer Science, University of Auckland

3. School of Biological Sciences, The University of Auckland

4. Centre for Brain Research, The University of Auckland

5. The Maurice Wilkins Centre, The University of Auckland

6. Garvan Institute of Medical Research, Sydney, Australia

7. MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK

8. Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore

Abstract

Autism is a complex neurodevelopmental condition that manifests in various ways. Autism is often accompanied by other conditions, such as attention-deficit/hyperactivity disorder and schizophrenia, which can complicate diagnosis and management. Although research has investigated the role of specific genes in autism, their relationship with co-occurring traits is not fully understood. To address this, we conducted a two-sample Mendelian randomisation analysis and identified four genes located at the 17q21.31 locus that are putatively causal for autism in fetal cortical tissue (LINC02210,LRRC37A4P,RP11-259G18.1, andRP11-798G7.6).LINC02210was also identified as putatively causal for autism in adult cortical tissue. By integrating data from expression quantitative trait loci, genes and protein interactions, we identified that the 17q21.31 locus contributes to the intersection between autism and other neurological traits in fetal cortical tissue. We also identified a distinct cluster of co-occurring traits, including cognition and worry, linked to the genetic loci at 3p21.1. Our findings provide insights into the relationship between autism and co-occurring traits, which could be used to develop predictive models for more accurate diagnosis and better clinical management.

Funder

Auckland Doctoral Scholarship

Dines Family Foundation

Publisher

Life Science Alliance, LLC

Subject

Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3