A scalable approach to topic modelling in single-cell data by approximate pseudobulk projection

Author:

Subedi Sishir12,Sumida Tomokazu S3,Park Yongjin P245ORCID

Affiliation:

1. Bioinformatics Graduate Program, University of British Columbia, Vancouver, Canada

2. BC Cancer Research, Vancouver, Canada

3. Neurology, Program for Neuroinflammation, Yale School of Medicine, New Haven, CT, USA

4. Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada

5. Department of Statistics, University of British Columbia, Vancouver, Canada

Abstract

Probabilistic topic modelling has become essential in many types of single-cell data analysis. Based on probabilistic topic assignments in each cell, we identify the latent representation of cellular states. A dictionary matrix, consisting of topic-specific gene frequency vectors, provides interpretable bases to be compared with known cell type–specific marker genes and other pathway annotations. However, fitting a topic model on a large number of cells would require heavy computational resources–specialized computing units, computing time and memory. Here, we present a scalable approximation method customized for single-cell RNA-seq data analysis, termed ASAP, short for Annotating a Single-cell data matrix by Approximate Pseudobulk estimation. Our approach is more accurate than existing methods but requires orders of magnitude less computing time, leaving much lower memory consumption. We also show that our approach is widely applicable for atlas-scale data analysis; our method seamlessly integrates single-cell and bulk data in joint analysis, not requiring additional preprocessing or feature selection steps.

Funder

UBC | University of British Columbia Graduate School

Canadian Government | Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

BC Cancer Foundation

Publisher

Life Science Alliance, LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3