Abstract
This paper presents an innovative approach to achieve efficient solar water pumping through the integration of a Photovoltaic (PV) array and a Brushless Direct Current (BLDC) motor water pumping system. The system incorporates a Voltage Source Converter (VSC) with six switches, utilized to facilitate commutation. The inherent solar radiation is harnessed by the PV array, capitalizing on its renewable nature to generate electricity. By dynamically adjusting the switching states of the six VSC switches, the speed of the BLDC motor is modulated in response to the varying levels of available solar radiation. The BLDC motor's hall sensor signals play a crucial for determining the rotor's position and they are employed to generate precise commutation signals. The control strategy integrates the Incremental Conductance (INC) Maximum Power Point Tracking (MPPT) algorithm, which initially governs the commutation signals. To enhance adaptability to rapidly changing solar irradiation conditions, the control strategy dynamically updates the commutation signals using the innovative Beta MPPT algorithm. To assess the efficiency of the proposed control strategy, a comprehensive comparison between the INC and Beta MPPT algorithms is conducted using MATLAB Simulink. The performance of the BLDC motor under these algorithms was evaluated in terms of its ability to optimize energy extraction. The graphical analysis of these algorithms, considering the temporal aspect, substantiates the identification of the superior MPPT algorithm for BLDC motor control in solar water pumping applications. This study contributes to the advancement of solar water pumping systems by introducing a novel control approach that combines PV array utilization, VSC-based commutation, and a dual-step MPPT algorithm. The results demonstrate the effectiveness of the Beta MPPT algorithm by enabling the system to respond promptly to fluctuating solar irradiation conditions, thereby enhancing the overall efficiency of the solar water pumping process.
Publisher
Universidad Tecnologica de Bolivar
Reference28 articles.
1. C. Jain and B. Singh. An Adjustable DC Link Voltage-Based Control of Multifunctional Grid Interfaced Solar PV System. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(2):651–660, 6 2017.
2. B. Reddy, Obbu Sekhar, and M. Ramamoorty. Analysis and implementation of single-stage buck-boost-buck converter for battery charging applications. Journal of Advanced Research in Dynamical and Control Systems, 10:446–457, 01 2018.
3. B. Reddy, Pandian Alagappan, Obbu Sekhar, and M. Rammoorty. Design of non-isolated integrated type ac-dc converter with extended voltage gain and high power factor for class-c&d applications. International Journal of Recent Technology and Engineering, 7:230–236, 01 2019.
4. A. K. Mishra and B. Singh. A single stage solar PV array based water pumping system using SRM drive. 2016 IEEE Industry Applications Society Annual Meeting, 10 2016.
5. S. Jain, A. K. Thopukara, R. Karampuri, and V. T. Somasekhar. A Single-Stage Photovoltaic System for a Dual-Inverter-Fed Open-End Winding Induction Motor Drive for Pumping Applications. IEEE Transactions on Power Electronics, 30(9):4809–4818, 9 2015.