Assessment of gene action and combining ability for advancement of yield andits attributing traits in pansy (<i>Viola </i>× <i>wittrockiana </i>Gams.) through diallel mating design

Author:

K K Dhatt,Bolagam Ravikumar

Abstract

Pansy is one of the most important bedding winter annual for sub-tropical climatic conditions. Twenty-eight F1 hybrids of pansy were evaluated in randomized block design with three replications, to study the combining ability for vegetative and floral characters. The analysis of variance indicated significant variability among all the genotypes for all the characters. The ratio of genetic component of variance indicated the equal importance of additive and non-additive gene action in governing the flower yield and its component traits of pansy. Estimates of general combining ability effects showed that parents Pa-64-1-5-14, Pa-62-4-12-18, Pa-63-1-7-25 and Pa-32-8-7-6 were good general combiners for most of the traits except stalk length and flower size. The specific combining ability effects showed that for yield traits the best cross combinations were Pa-64-1-5-14 × Pa-62-4-12-18, Pa-13-1-2-3 × Pa-47-1-3, Pa-11-1-3-7 × Pa- 62-4-12-18, Pa-64-1-5-14 × Pa-63-1-7-25 and Pa-11-1-3-7 × Pa-64-1-5-14. The study on gene effect of different characters indicated the predominance of non-additive gene effects for most of the characters. The gca variances was higher for branches number, flower size, days from bud initiation to flowering and flowers number than sca variances, indicating additive gene action, and progeny selection will be effective for the genetic improvement of these traits.

Publisher

Society for Promotion of Horticulture

Reference12 articles.

1. Backer, R. J. (1978). Issues in diallel analysis. Crop Science, 18, 533-536.https://doi.org/10.2135/cropsci1978.0011183X001800040001x.

2. Baweja, H. S. (2001). Seed setting in pansy (Viola tricolor L.). Advances in Horticulture and Forestry, 8, 185-190.

3. Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing system. Australian Journal of Biological Sciences, 9, 463-493.

4. Gupta, Y. C., Ragahava, S.P.S., & Misra, R.L. (2001). Heterobeltiosis in African marigold (Tagetes erecta L.). Indian Journal of Genetics and Plant Breeding, 61, 65-68.

5. Kumar, S., Shirol, A. M., Patil, B. R., Reddy, B. S., & Kulkarni, B. S. (2004). Combining ability studies in China aster (Callistephus chinensis L. Nees.). Journal of Ornamental Horticulture, 7, 22-26.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3