Transcriptome analysis and identification of leaf, tuberous root and fibrous root tissue-specific high temperature stress-responsive genes in sweet potato

Author:

Senthilkumar K M,Raju Saravanan,Velumani Ravi,Gutam Sridhar

Abstract

Sweet Potato is an important food crop, and its production is affected by environmental stresses, including high temperature. The gene expression patterns and molecular responses in different tissues of sweet potato under high temperature stress were studied using microarray data sets. Analysis revealed that modulation in the expression of key genes and pathways associated with various proteins including enzymes under high temperature stress in leaf, fibrous root and storage root tissues. Tissue-specific responses, with both common and unique cellular responses were observed among the tissues. Pathway analysis revealed the differential regulation of genes involved in DNA replication, metabolism, transport, signaling, and stress response during high temperature stress. Six genes viz., DnaJ-domain protein (IpDnaJ), nuclear protein (IpELF5), heat shock protein 90.1 (IpHsp90.1), ABC   transporter   (IpABC)   hydrolase (IpNUDX1)   and alternative oxidase 1a (IpAO1a), were up-regulated in the leaf, fibrous root and tuberous root tissues. These six genes might play an important role in imparting high temperature stress tolerance in the leaf, fibrous root and tuberous root tissues of sweet potato. The information generated provides valuable insights on leaf, tuberous root and fibrous root tissue-specific high temperature stress-responsive genes in sweet potato. These datasets will be helpful in selecting candidate genes and pathways for further functional and genomic analyses, facilitating the genetic improvement of sweet potato with enhanced stress tolerance.

Publisher

Society for Promotion of Horticulture

Subject

Horticulture,Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3