Clustering Elements of Truss Structures for Damage Identification by CBO

Author:

Talebpour Mohammad Hosein,Goudarzi Younes,Sharifnezhad Mehrdad

Abstract

The number of structural elements plays a significant role in detecting damage location and severity; such methods have sometimes failed to provide correct solutions due to the entrapment of damage detection algorithms in the local optimum. To resolve this problem, this study proposed the simultaneous use of mathematical and statistical methods to narrow down the search space. To this end, a two-step damage detection method was proposed. In the first step, the structural elements were initially divided into different clusters using the k-means method. Subsequently, the possibly damaged elements of each cluster were identified. In the second step, the elements selected in the first step were placed in a new set, and a process was applied to identify their respective damage location and severity. Thus, the proposed method reduced the search space as well as the possibility of entrapment in the local optimum. Other advantages of the proposed method include the use of fewer dynamic properties. Accordingly, by narrowing down the search space and the dimensions of the system for governing equations, the proposed method could significantly increase the chance of obtaining favorable results in structures with many elements and those with few vibration modes. A meta-heuristic method, called the colliding bodies optimization (CBO), was used in the proposed damage detection optimization algorithm. The optimization problem was based on the modal strain energy equations. According to the results, the proposed method was able to detect the location and severity of damage, even at its slightest percentage.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3