Seismic Performance Assessment of a Pin-bearing Restraint System for Curved Bridge

Author:

Wang Huili,Zhao Kunkun,Qin Sifeng

Abstract

The traditional restraint systems limit the deformation of curved bridge under temperature load, which results in radial and tangential secondary internal forces in the bridge. This paper proposes a pin-bearing restraint system (PBRS) for curved bridge, which can relax the rotational deformation of curved bridge under temperature load. Its configuration and working mechanism are illustrated. The finite element model of a curved bridge with PBRS is established using ANSYS software, and nonlinear time history analysis is conducted. The pounding force and pounding number between pin and slot under ground motion are analyzed. The pin stiffness, the gap and the ratio of upper structure mass to lower structure mass are selected for parametric study. The results show that the pounding force and pounding number present dramatic changes with pin stiffness. As the pin stiffness increases, the pounding force presents a logarithmic linear tendency, and the pounding number shows a reduce tendency. Gap has little influence on pounding force and pounding number. The radial pounding force and pounding number increase with the increase of mass ratio.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3