High-temperature Thin-layer Drying Kinetic of Cultivated and Wild Algerian Olive Leaves

Author:

Boukhiar Aissa,Benamara Salem,Bouchal Yougourthane,Touderte Kahina,Messouidi Siham

Abstract

Olive leaves (OLs) are well known for being rich in oleuropein, their main bioactive molecule which has recently been attracting great interest from the scientific community due to its antiviral properties, including Covid-19 disease. Furthermore, the high-temperature/short-time drying process has found applications for various plants and food processing, which might be also implemented for the drying of OLs. This study focuses on: 1. the mathematical modeling of thin-layer high-temperature-drying (HTD) kinetic of olive (var. Chemlal and Oleaster) leaves, and 2. the determination of HTD effect on some physicochemical properties (oleuropein, chlorophylls, and CIELab color parameters) of the dried olive leaves (DOLs). For this, four drying temperatures (100, 120, 140, and 160 °C) were applied. For comparison purposes, low-temperature DOL samples were also prepared. The obtained data have shown that among the tens tested mathematical models, the Midilli et al. model describes more correctly experimental data for all drying temperatures and for both olive leaf varieties (R2 = 0.9960, SEE = 0.0085, RMSE = 0.0165 and χ2 = 0.0006). Moreover, the results show that the HTD at 120 and 160 °C does not differ from freeze-drying in terms of oleuropein retention (p < 0.05), highlighting the technological interest in the high-temperature/short-time drying process. Considering the biological value of oleuropein, in particular its antiviral activity, the study deserves further investigation in order to elucidate certain questions such as the storability of DOLs, and their valorization as fortification ingredient in food and pharmaceutical formulations, evaluation in vitro of their biological activities, etc.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3