Statistical and Numerical Study of Chipping and Cracking in Segmental Lining

Author:

Mohtadinia Mohammad,Ahmadi Mohammad Hossein,Fasaghandis Milad Manafi,Dibavar Behnaz Hallaji,Davarpanah Seyed Morteza

Abstract

Some of the most frequent damages of concrete segments in shield tunnels are chipping and cracking, which are followed by degradation of lining system. In this paper, these types of damages are studied in four subway and two water conveyance tunnels. More than 2100 concrete rings are examined for chipping inspection and another 3000 for determination of the cracking. Statistical analysis of the research data showed that corners of the key and counter-key segments carry the highest number of chipping, while most of the cracking occur in the middle zones and shape of the segments and number of trust jacks affect the cracking pattern. Two kinds of numerical models are used to examine the underlying damages, which are based on geometrical characteristics of tunnel lining and boring machine besides operational mistakes. Findings of the numerical simulation revealed that installation of segmental lining with the least amount of erection tolerances results in low amount of chipping, this is while using key-segments with 12–17 degrees of insertion angle reduces total magnitude of damage due to tensile and compressive stresses. Furthermore, the deviation angle of TBM’s jack and segment’s axis should never be more than 5 degrees; otherwise even high-quality concrete segments wouldn’t remain undamaged. Employment of boring machines with articulated system is proposed in this case.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3