Lightweight Real-time Detection of Components via a Micro Aerial Vehicle with Domain Randomization Towards Structural Health Monitoring

Author:

Agyemang Isaac Osei,Zhang Xiaoling,Adjei-Mensah Isaac,Arhin Joseph Roger,Agyei Emmanuel

Abstract

Civil structural component detection plays an integral role in Structural Health Monitoring (SHM) pre and post-construction. Challenges including but not limited to labor-intensiveness, cost, and time constraints associated with traditional methods make it a less opti-mal approach in SHM. Despite the success of deep convolutional neural networks in diverse detection problems, the required computational resources are a challenge. This has led to rendering a chunk of resource-constrained edge nodes less applicable with deep convolutional neural networks. In this paper, a computational-efficient deep convolutional neural network is presented based on Gabor filters and a color Canny edge detector. Generic Gabor filters are generated and used as initializers in the computational-efficient deep convolutional neural network presented, afterward trained on building components data. Next, extensive offline and online experimentation with a resource-constrained edge node is conducted and evaluated using diverse metrics. The computational-efficient detection model demonstrates to be effective in detection and via NVIDIA GPU profiler, we observe conservation of around 30% of computational resources during training. The computational-efficient detection model adduces almost a 3% mean average precision higher than two state-of-the-art detectors and records a promising frame processing rate during the online experimentation.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-visual modality micro drone-based structural damage detection;Engineering Applications of Artificial Intelligence;2024-07

2. Fusion of infrared and visible images via multi-layer convolutional sparse representation;Journal of King Saud University - Computer and Information Sciences;2024-07

3. A shallow 2D-CNN network for crack detection in concrete structures;International Journal of Structural Integrity;2024-04-12

4. Automated vision-based structural health inspection and assessment for post-construction civil infrastructure;Automation in Construction;2023-12

5. ADCGNet: Attention-based dual channel Gabor network towards efficient detection and classification of electrocardiogram images;Journal of King Saud University - Computer and Information Sciences;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3