Probabilistic Seismic Performance Assessment of Tall RC Special Moment-resisting Frame Buildings Equipped with Buckling-restrained Braces under Near-field Excitations

Author:

Zarif Moghadam Basefat Ali,Pahlavan Hossein,Shafaie Jalil

Abstract

Many tall buildings have already been constructed near faults throughout the world, several of which have sustained casualties and economic losses during strong ground motions. This study investigates the effect of near-fault excitations on the vulnerability of tall, reinforced concrete (RC) special moment-resisting frame (SMRF) buildings equipped with buckling-restrained braces (BRBs) using seismic fragility curves. After attaining the structure’s response modification factor (R), three-dimensional (3D) models of 15-, 25- and 35-story frames were developed by the OpenSees software according to the Iranian code provisions. Thus, the seismic response of the elements was obtained. Subsequently, incremental dynamic analysis (IDA) was conducted by selecting a suitable number of compatible accelerograms in two near-field and far-field groups. Considering the maximum story drift as the demand parameter and selecting the interstory drift ratios (IDR) for the slight, moderate, extensive, and complete collapse seismic performance levels proposed by Hazus, IDA curves were plotted. Then, the seismic fragility curves were produced using the structural reliability relations. The median fragility at complete collapse damage level reduced from 0.73g, 0.62g, and 0.61g to 0.68g, 0.59, and 0.57g for the 15-, 25, and 35-story near-field and far-field earthquake models, respectively. This was attributed to increasing vulnerability and seismic fragility of the structures as a result of both height increase and distance reduction from fault. Based on the results, the most vulnerable structure, i.e., the 35-story near-fault model, experienced a 40, 17, 18, and 6% increase in median fragility at slight, moderate, extensive, and complete collapse damage levels, respectively.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3