Study and Optimization of a New Perovskite Solar Cell Structure Based on the Two Absorber Materials Cs2TiBr6 and MASnBr3 Using SCAPS 1D

Author:

Dris Keltoum,Benhaliliba Mostefa

Abstract

The main objective of this study is to optimize the photovoltaic parameters of a new perovskite solar cell structure (PSC) suggested, using the simulator solar cell capacitance simulator-one dimension (SCAPS-1D) which aims to improve its performance by adjusting different key variables. This new suggested cell which consists of six materials represents the major innovation point of our research, it is distinguished by a double active layer, composed of the two-cesium titanium hexabromide (Cs2TiBr6) and methylammonium tin tribromide (MASnBr3) perovskites. Using the SCAPS 1D software, the simulation allows to determine the optimal values of the various parameters to maximize the efficiency of the PSC. First, the effect of the thickness and defect densities of both Cs2TiBr6 and MASnBr3 materials on the output parameters was studied as well as the defect density in the interfaces. Subsequently, the doping density in Cs2TiBr6 and MASnBr3 was also optimized. Finally, the impact of temperature, series resistance and shunt resistance were evidenced. The results indicate that precise adjustments of these parameters can lead to significant improvements in photovoltaic performance, such as open circuit voltage of 1.105 V, short-circuit current density of 33.90 mA cm−2, fill factor of 88.01% and power conversion efficiency (PCE) 32.96%. These performances were obtained for a thickness of 700 nm for Cs2TiBr6 and 900 nm for MASnBr3, a defect density of 1014 cm−3 for each absorber layer, a defect density of 1014 cm−2 for each interface and a doping density of the order of 1018 cm−3 for each absorbent layer.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3