In-flight Synthesis of Nanosized ZrC Particles from Various Precursors in RF Thermal Plasma

Author:

Martiz Alejandro,Károly Zoltán,Bódis Eszter,Fazekas Péter,Mohai Miklós,Bertóti Imre,Keszler Anna Mária

Abstract

Synthesis of zirconium carbide (ZrC) powder was investigated applying a non-conventional atmospheric radiofrequency (RF) thermal plasma process. In one case, zirconium dioxide (ZrO2) was reacted with solid carbon or with methane with varying molar ratio. In the other, zirconium-propoxide (NZP), containing both constituents, was thermally decomposed in the Ar plasma. Temperature-dependent thermodynamic analysis was performed in the 500-5500 K temperature range to estimate the formation of possible equilibrium products for each reaction stoichiometry. Broad temperature range exists for the stability of solid ZrC for each explored reaction system. In accordance with this prediction, X-ray diffraction studies detected the ZrC as the major phase in all the prepared powders. The yield of particular runs ranged from 39 % to 98 %. Practically, full conversion was typical for the case of NZP precursor, however only partial conversion could be detected in ZrO2 reactions. The average particle size of the powders falls between 10 nm and 100 nm depending on the type of the reaction systems (either calculated from the specific surface area or derived from broadening the XRD reflections). The transmission electron micrographs indicated mostly globular shape of the nanosize particles. Quantitative analysis of the surface of the powders by X-ray photoelectron spectroscopy revealed the presence of oxygen and carbon. Evaluating the spectra of the powders prepared from NZP, and taking in the account its spherical shape, a ZrC core covered by a very thin (≈1.0 nm) ZrO2 layer may be accounted for the measured oxygen and a thicker carbonaceous layer.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3