Taking into Account the Variable Nature of the Calculation Standards of the Train Formation Plan Using Computational Intelligence Technologies

Author:

Badeckiy Aleksandr1,Medved' Oksana1,Kukushkina Yana1

Affiliation:

1. Emperor Alexander I St. Petersburg State Transport University

Abstract

Purpose: The train formation plan is the most important logistics tool for cargo transportation management. But the use of discrete values of design standards in its development — the quantity of car-hours for the accumulation of trains and savings from passing of cars through technical station without processing — do not always guarantee the optimal solution due to the objectively existing unevenness of operational work. It is precisely this factor that generates uncertainty, which is not inherently stochastic, and necessitates adjustments to the train formation plan throughout its lifecycle. In addition to fluctuations in car traffic, it causes a change in the values of the calculated standards. To manage such uncertainty, there are special methods, one of which is fuzzy logic. The article describes a way to account for changes in all calculation standards of the train formation plan. Methods: The methods of one of the technologies of computational artificial intelligence are used — fuzzy logic, fuzzy sets and fuzzy mathematics. Results: The dependence has been established on how changes in the calculated parameters of the train formation plan are affected by fluctuations in car flows on specific destinations. The formulas obtained on the basis of known analytical expressions allow us to determine the values of the standards of the formation plan without using auxiliary tables and graphs. Practical significance: The use of the obtained dependencies in the development of the formation plan will improve the accuracy of its calculation by taking into account fluctuations not only of car traffic, but also the values of the calculated standards depending on them.

Publisher

Petersburg State Transport University

Subject

General Medicine

Reference24 articles.

1. Рутковская Д. Нейронные сети, генетические алгоритмы и нечеткие системы / Д. Рутковская, М. Пилиньский, Л. Рутковский. — М.: Горячая линия — Телеком, 2006. — 452 с., Rutkovskaya D. Neyronnye seti, geneticheskie algoritmy i nechetkie sistemy / D. Rutkovskaya, M. Pilin'skiy, L. Rutkovskiy. — M.: Goryachaya liniya — Telekom, 2006. — 452 s.

2. Siddique N. Computational intelligence: synergies of fuzzy logic, neural network and evolutionary computing / N. Siddique, H. Adeli. — John Wiley & Sons, Ltd, 2013. — 517 p., Siddique N. Computational intelligence: synergies of fuzzy logic, neural network and evolutionary computing / N. Siddique, H. Adeli. — John Wiley & Sons, Ltd, 2013. — 517 p.

3. Shukla A. Computational intelligence / A. Shukla, B. K. Murthy, N. Hasteer et al. // Lecture Notes in Electrical Engineering. — 2022— Vol. 968. — Pp. 1876–1119. — DOI: 10.1007/978-981-19-7346-8., Shukla A. Computational intelligence / A. Shukla, B. K. Murthy, N. Hasteer et al. // Lecture Notes in Electrical Engineering. — 2022— Vol. 968. — Pp. 1876–1119. — DOI: 10.1007/978-981-19-7346-8.

4. Eberhart R. C. Computational Intelligence: Concepts to Implementations / R. C. Eberhart, Y. Shi. — Elsevier, 2011. — 496 p., Eberhart R. C. Computational Intelligence: Concepts to Implementations / R. C. Eberhart, Y. Shi. — Elsevier, 2011. — 496 p.

5. Xiao J. Comprehensive optimization of the one-block and two-block train formation plan / J. Xiao, B. Lin // Journal of Rail Transport Planning & Management. — 2016. — DOI: 10.1016/j.jrtpm.2016.09.002., Xiao J. Comprehensive optimization of the one-block and two-block train formation plan / J. Xiao, B. Lin // Journal of Rail Transport Planning & Management. — 2016. — DOI: 10.1016/j.jrtpm.2016.09.002.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3