Approximate Effective Interaction for Nuclear Matter and Finite Nuclei

Author:

Ochala Isaiah1ORCID,Fiase Joseph2,Adeyemi John1,Abubakar Shuaibu1

Affiliation:

1. Department of Physics, Prince Abubakar Audu University, Anyigba, Nigeria

2. Department of Physics, Benue State University, Makurdi, Nigeria

Abstract

In this paper, an approximate effective nucleon-nucleon interaction for nuclear matter and finite studies has been derived using the lowest order constrained variational (LOCV) approach. The LOCV method, a functional minimization procedure, uses a normalization constraint to keep higher-order terms as small as possible. As a first step, two-body matrix elements based on the Reid93 nucleon-nucleon potential were calculated for the nuclear system A = 16 in a harmonic oscillator basis, with the oscillator size parameter <i>ћω </i>= 14.0 MeV, and separated into the central, spin-orbit and tensor channels in conformity with the potentials for Inelastic scattering. Following this, a least squares fitting of the matrix elements to a sum of Yukawa functions was performed to determine the strengths of the effective interaction in the singlet-even, singlet-odd, triplet-even and triplet-odd (Central); tensor-even and tensor-odd (Tensor); spin-orbit-even and spin-orbit-odd (Spin-orbit) channels. Of all the matrix elements, only the triplet-even and tensor-even components, being attractive, are affected by the tensor correlations (<i>a </i>= 0.05); and are shown to exhibit the same trend of variation in conformity with past work, in terms of magnitude, as one goes from the lower-node quantum numbers (n’, n) = (0, 0) to higher ones (n’, n) = (2, 2). When compared with the G-matrix results of previous researchers, the results obtained herein have been found to be in good agreement. This, therefore, gives hope that the new effective interaction promises to be a reliable tool for nuclear matter and nuclear structure studies.

Publisher

Science Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3