An Analytical Model for Cosmology with a Single Input, the Redshift

Author:

Mostaghel Naser1ORCID

Affiliation:

1. Department of Civil Engineering, University of Toledo, Toledo, USA

Abstract

We propose an analytical model for cosmology which requires only one parameter as an input. This parameter is the redshift. The model is based on conservation of energy, Planck’s Radiation Law, and the relation between energy and frequency of waves. The model yields the current age of the universe, the age of the universe at the CMB emission, as well as the time histories of its expansion velocity and acceleration. The model also is used to show the existence of a constant energy per unit area, associated with the momentum energy of photons, which generates the pressure that perpetuates the expansion of the universe. The model is completely independent of the ɅCDM model but implicitly includes the effects of gravity. Using the model we show the existence of a constant in nature that under certain assumptions can represent the Hubble constant. We have used the model to derive the Hubble constants measured by Reiss et al. and by the Planck Collaboration. Using the model we show that the path of light in the Planck collaboration measurement is along a circular arc, while the Reiss et al. measurement path is exactly along the chord of the same circular arc. The difference in the light travel times along these two paths matches exactly the difference between the two measured values for the Hubble constant, as measured by Reiss et al. and as measured by the Planck Collaboration. This result explains the cause of tension between the two methods of measurement.

Publisher

Science Publishing Group

Reference30 articles.

1. Riess, A. G., Casertano, S., Yuan, W., et al., (2021), “Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM,” Apj, 908, L6.

2. Aghanim, N., Akrami, Y., Ashdown, M., et al., (2021), “Planck 2018 Results. VI. Cosmological Parameters,” Astronomy & Astrophysics, 571, A6, arXiv: 2208.07467v1, Aug 2021.

3. Di Valentino, E., 2021, “In the Realm of the Hubble Tension – a Review of Solutions,” Preprint, arXiv: 2103.01183v3.

4. Di Valentino, E., 2021, “A Combined Analysis of the H<sub>0</sub> Late Time Direct Measurements and the Impact on the Dark Energy Sector,” Royal Astronomical Society, 502, 2065-2073.

5. Abbott, T. M. C., Abdalla, J., Annis, K., et al., 2018, “Dark Energy Survey Year 1 Results: A Precise H<sub>0</sub> Measurement from DES Y1, BAO, and D/H Data,” Preprint, arXiv: 1711.00403v1.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3