Reservoir Quality Under the Control of Gravity Flows in the C7 Member of Yanchang Formation in the Jinghe Oilfield, Ordos Basin, China

Author:

Fudol Yousuf1ORCID,Liu Hongping2ORCID

Affiliation:

1. Graduate School, China University of Geosciences, Wuhan, China

2. Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan, China

Abstract

The late Triassic sandstone reservoir in the C7 member of the Jinghe oilfield southern Ordos basin is a typical deep-water gravity flow tight oil reservoir. Sedimentary microfacies, physical properties, and petrographic analysis were being examined for quality determination. Pore structure and physical properties data together combined with, thin sections, and scanning electron microscope and core images were used to identify factors controlling reservoir physical properties. The depositional system under debates of different gravity flows including debris flow, seismite slumping, and turbidity flows. Among which sandy debris flow facies shows a better distribution of porosity and permeability followed by seismite-slump, where turbidity facies are the poorest. The petrophysical analysis shows that the study oil interval is a typical tight sandstone reservoir with an average porosity of 9% and permeability average being 0.025mD. The rock classification criteria of the C7 sandstone reveal the sub-categories of lithic feldspar sandstone and feldspar lithic sandstone. Average quartz sandstone contents of 48.25%, average feldspar sandstone content being 25%, and lithic fragments content of 29%. The formation lithology comprises mostly fine-grained sandstone and small pore size, which disclose that the porosity-permeability distribution increases proportional to the average and median pore throat radius, and decreases with average and median pressure. The microfacies distribution shows that the depositional facies controlled physical properties. The sandstone primary pores are affected by the mineral composition of quartz, feldspar, illite, smectite, kaolinite, calcite, and dolomite. Features such as dissolved pores and intergranular pore filling by feldspar, silky-like aggregates of illite-smectite intergranular pore filling and most diagenetic minerals influenced the sandstone pores beside the compaction.

Publisher

Science Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3