A Machine Learning-Based Prediction of Malaria Occurrence in Kenya

Author:

Muriithi Dennis1ORCID,Lumumba Victor1ORCID,Okongo Mark1ORCID

Affiliation:

1. Center for Data Analytics and Modelling, Faculty of Science and Technology, Chuka University, Chuka, Kenya

Abstract

For many years’ malaria has been a health public concern in Kenya as well as many parts of Africa and other parts of the world. The purpose of this study is to develop and evaluate a supervised machine learning model to predict malaria occurrence (final malaria test results) in Kenya. The study investigated twelve predictor variables on the outcome variable (malaria test results), where five machine learning models namely; k-nearest neighbors, support vector machines, random forest, tree bagging, and boosting, were estimated. During the model evaluation, random forest emerged as the best overall model in the classification and prediction of final malaria test results. The model attained a higher classification accuracy of 97.33%, sensitivity of 71.1%, specificity of 98.4%, balanced accuracy of 84.7% and an area under the curve of 98.3%. From the final model, the presence of plasmodium falciparum emerged most important feature, followed by region, endemic zone and anemic level. The feature with the least importance in predicting final malaria test results was having mosquito nets. In conclusion, employing Machine learning algorithms enhances early detection, optimizing resource allocation for interventions, and ultimately reducing the incidence and impact of malaria in the Kenya. The study recommends allocation of resources and funds to areas with the presence of plasmodium falciparum, region susceptible to malaria, endemic zones and anemic prone areas.

Publisher

Science Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3