Affiliation:
1. Skull Base and Cerebrovascular Laboratory, Department of Neurosurgery, University of California, San Francisco, California; and
2. Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
Abstract
Object
Surgical simulation using postmortem human heads is one of the most valid strategies for neurosurgical research and training. The authors customized an embalming formula that provides an optimal retraction profile and lifelike physical properties while preventing microorganism growth and brain decay for neurosurgical simulations in cadavers. They studied the properties of the customized formula and compared its use with the standard postmortem processing techniques: cryopreservation and formaldehyde-based embalming.
Methods
Eighteen specimens were prepared for neurosurgical simulation: 6 formaldehyde embalmed, 6 cryopreserved, and 6 custom embalmed. The customized formula is a mixture of ethanol 62.4%, glycerol 17%, phenol 10.2%, formaldehyde 2.3%, and water 8.1%. After a standard pterional craniotomy, retraction profiles and brain stiffness were studied using an intracranial pressure transducer and monitor. Preservation time—that is, time that tissue remained in optimal condition—between specimen groups was also compared through periodical reports during a 48-hour simulation.
Results
The mean (± standard deviation) retraction pressures were highest in the formaldehyde group and lowest in the cryopreserved group. The customized formula provided a mean retraction pressure almost 3 times lower than formaldehyde (36 ± 3 vs 103 ± 14 mm Hg, p < 0.01) and very similar to cryopreservation (24 ± 6 mm Hg, p < 0.01). For research purposes, preservation time in the cryopreserved group was limited to 4 hours and was unlimited for the customized and formaldehyde groups for the duration of the experiment.
Conclusions
The customized embalming solution described herein is optimal for allowing retraction and surgical maneuverability while preventing decay. The authors were able to significantly lower the formaldehyde content as compared with that in standard formulas. The custom embalming solution has the benefits from both cryopreservation (for example, biological brain tissue properties) and formaldehyde embalming (for example, preservation time and microorganism growth prevention) and minimizes their drawbacks, that is, rapid decay in the former and stiffness in the latter. The presented embalming formula provides an important advance for neurosurgical simulations in research and teaching.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Genetics,Animal Science and Zoology
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献